Skip to main content
Log in

Molecular and morphological characterization of poly(L-lactic acid-co-glycolic acid) P(L-LA/GA) copolymers prepared by Azeotropic distillation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The synthesis and molecular/morphological characterization of poly(L-lactic acid-co-glycolic acid) P(L-LA/GA) copolymers were investigated. The optimum reaction conditions were first determined by azeotropic distillation polymerization of poly(L-lactic acid) P(L-LA) homopolymers. Once the best reaction conditions were determined, the P(L-LA/GA) copolymers were synthesized by increasing the glycolic acid (GA) proportion in the reaction mixture from 0 to 7.5 mol%. The 13C NMR technique allowed inferring the formation of a copolymer with increasing segmental GA characteristics. These last with the potential to be rejected from the main crystals, assumption that was supported by the convergence of the crystallization and melting temperatures as the molar ratio of GA increased. The diffraction patterns of the copolymers demonstrated the gradual formation of α-α” crystal blends with the GA content and the crystallization and meting results allowed conclude that the increasing number of GA units in the main chain was related to molecular rejection, which resulted in a secondary exclusion phase, the major contribution to melting at the first melting endotherm. This behavior was in correlation with the step-like crystallization and melting mechanism previously proposed for high temperature engineering polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Aou K, Kang S, Hsu SL (2005) Morphological study on thermal shrinkage and dimensional stability associated with oriented poly(lactic acid). Macromolecules 38(18):7730–7735

    Article  CAS  Google Scholar 

  2. Lan P et al. (2004) Studies on the synthesis and thermal properties of copoly(l-lactic acid-glycolic acid) by direct melt polycondensation. J Appl Polym Sci 92(4):2163–2168

    Article  CAS  Google Scholar 

  3. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3(3):1377–1397

    Article  CAS  Google Scholar 

  4. Saeidlou S et al. (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37(12):1657–1677

    Article  CAS  Google Scholar 

  5. Yin H et al. (2015) Synthesis and structure control of L-lactic acid–glycolic acid copolymer by homocopolymerization. J Appl Polym Sci 132(9):41566(1–6). doi:10.1002/app.41566

    Google Scholar 

  6. Marras SI, Zuburtikudis I, Panayiotou C (2007) Nanostructure vs. microstructure: morphological and thermomechanical characterization of poly(l-lactic acid)/layered silicate hybrids. Eur Polym J 43(6):2191–2206

    Article  CAS  Google Scholar 

  7. Pan P, Inoue Y (2009) Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 34(7):605–640

    Article  CAS  Google Scholar 

  8. Mano JF et al. (2004) Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol 64(6):789–817

    Article  CAS  Google Scholar 

  9. Lu JM et al. (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9(4):325–341

    Article  CAS  Google Scholar 

  10. Nam JY et al. (2006) Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer 47(4):1340–1347

    Article  CAS  Google Scholar 

  11. Auras, R.A., et al., (2011) Poly-lactic acid. Synthesis, structures, properties, processing, and applications. 10:100–107. Wiley

  12. Ajioka M et al. (1995) The basic properties of poly (lactic acid) produced by the direct condensation polymerization of lactic acid. J Environ Polym Degrad 3(4):225–234

    Article  CAS  Google Scholar 

  13. Medellin-Rodriguez FJ et al. (1997) The triple melting behavior of poly (ethylene terephthalate): Molecular weight effects. J Polym Sci B Polym Phys 35(11):1757–1774

    Article  Google Scholar 

  14. Chen H et al. (2011) Synthesis and characterization of side chain polymer with helical PLLA segments containing mesogenic end group. Polymer 52(2):400–408

    Article  CAS  Google Scholar 

  15. Priftis D et al. (2009) Polymer grafted Janus multi-walled carbon nanotubes. Soft Matter 5(21):4272

    Article  CAS  Google Scholar 

  16. Fakirov, S., (2008) Transreactions in condensation polymers. Wiley

  17. Gan Z et al. (2001) Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2(2):605–613

    Article  CAS  Google Scholar 

  18. Erbetta CDAC et al. (2012) Synthesis and Characterization of Poly(D,L-Lactide-co-Glycolide) Copolymer. J Biomed Nanotechnol 03(02):208–225

    CAS  Google Scholar 

  19. Medellin-Rodriguez FJ et al. (2004) Melting behavior of polymorphics: molecular weight dependence and steplike mechanisms in nylon-6. Macromolecules 37(5):1799–1809

    Article  CAS  Google Scholar 

  20. Gao Q et al. (2002) Direct synthesis with polycondensation and microstructure analysis of poly(l-lactic acidco-glycoluc acid). Polym J 34(11):786–793

    Article  CAS  Google Scholar 

  21. Urayama H, Moon SI, Kimura Y (2003) Microstructure and thermal properties of Polylactides with different Land D-unit sequences: importance of the helical nature of the L-sequenced segments. Macromol Mater Eng 288(2):137–143

    Article  CAS  Google Scholar 

  22. Zhang J et al. (2005) Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules 38(19):8012–8021

    Article  CAS  Google Scholar 

  23. Zhang J et al. (2004) Weak intermolecular interactions during the melt crystallization of poly(L-lactide) investigated by two-dimensional infrared correlation spectroscopy. J Phys Chem B 108(31):11514–11520

    Article  CAS  Google Scholar 

  24. Pan P et al. (2012) Temperature-variable FTIR and solid-State13C NMR investigations on crystalline structure and molecular dynamics of polymorphic poly(l-lactide) and poly(l-lactide)/poly(d-lactide) Stereocomplex. Macromolecules 45(1):189–197

    Article  CAS  Google Scholar 

  25. Woo EM, Chang L (2011) Crystallization and morphology of stereocomplexes in nonequimolar mixtures of poly(l-lactic acid) with excess poly(d-lactic acid. Polymer 52(26):6080–6089

    Article  CAS  Google Scholar 

  26. Aou K, Hsu SL (2006) Trichroic vibrational analysis on the α-form of poly (lactic acid) crystals using highly oriented fibers and spherulites. Macromolecules 39(9):3337–3344

    Article  CAS  Google Scholar 

  27. Kang S et al. (2001) A spectroscopic analysis of poly (lactic acid) structure. Macromolecules 34(13):4542–4548

    Article  CAS  Google Scholar 

  28. Kister G, Cassanas G, Vert M (1997) Morphology of poly (glycolic acid) by IR and Raman spectroscopies. Spectrochim Acta A Mol Biomol Spectrosc 53(9):1399–1403

    Article  Google Scholar 

  29. Medellín-Rodríguez FJ et al. (1998) Triple melting behavior of poly (ethylene terephthalate co-1, 4-cyclohexylene dimethylene terephthalate) random copolyesters. J Polym Sci B 36(5):763–781

    Article  Google Scholar 

  30. Pan P et al. (2007) Polymorphous crystallization and multiple melting behavior of poly(L-lactide) molecular weight dependence. Macromolecules 40(19):6898–6905

    Article  CAS  Google Scholar 

  31. Marubayashi H et al. (2008) Crystalline structure and morphology of poly (L-lactide) formed under highpressure CO2. Macromolecules 41(23):9192–9203

    Article  CAS  Google Scholar 

  32. Sanchez IC, Eby RK (1973) Crystallization of random copolymers. J Res Natl Bur Stand 77(3):353–358

    Article  CAS  Google Scholar 

  33. Flory PJ (1955) Theory of crystallization in copolymers. Trans Faraday Soc 51:848–857

    Article  CAS  Google Scholar 

  34. Avila-Orta CA et al. (2003) On the nature of multiple melting in poly (ethylene terephthalate)(PET) and its copolymers with cyclohexylene dimethylene terephthalate (PET/CT. Polymer 44(5):1527–1535

    Article  CAS  Google Scholar 

  35. Medellin-Rodriguez FJ, Phillips PJ, Lin JS (1996) Melting behavior of high-temperature polymers. Macromolecules 29(23):7491–7501

    Article  CAS  Google Scholar 

  36. Ramírez-Vargas E et al. (2000) Morphological and mechanical properties of polypropylene [PP]/poly (ethylene vinyl acetate)[EVA] blends. I Homopolymer PP/EVA systems. Polym Eng Sci 40(10):2241–2250

    Article  Google Scholar 

  37. Roberts RC (1969) Poly (ethylene terephthalate) II—morphological changes on annealing. Polymer 10:117–125

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. Gutiérrez-Sánchez thanks CONACYT for the scholarship 306098. The authors acknowledge the support fund from P/PROFOCIE-2014-24MSU0011E-07 and from FCQ/UASLP through CA 213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Medellín-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Sánchez, M., Medellín-Rodríguez, F.J. & la- Cruz, L.I.Sd. Molecular and morphological characterization of poly(L-lactic acid-co-glycolic acid) P(L-LA/GA) copolymers prepared by Azeotropic distillation. J Polym Res 23, 200 (2016). https://doi.org/10.1007/s10965-016-1083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1083-5

Keywords

Navigation