Skip to main content
Log in

Synthesis of functionalized GO for improving the dielectric properties of bismaleimide-triazine resin

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A type of functionalized graphene oxide (GO), named GO-POSS-BPA, was synthesized by nucleophilic substitution reaction with chloropropyl polyhedral oligomeric silsesquioxanes (POSS) and bisphenol A (BPA). Subsequently, the GO-POSS-BPA was added into bismaleimide-triazine (BT) resin to improve dielectric properties of bismaleimide-triazine resin. The structure of GO-POSS-BPA was characterized by Fourier-transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopic (TEM). The effects of GO-POSS-BPA on the dielectric, mechanical, thermal and water resistant properties of BT resin were investigated systematically. The results show that, GO-POSS-BPA decreased the dielectric constant and dielectric loss of BT resin over the testing frequency from 10 to 50 MHz, also enhanced the stability of dielectric constant. Meanwhile, the appropriate content of GO-POSS-BPA can enhance the impact and flexural strengths of BT resin to a certain extent. In addition, GO-POSS-BPA can also enhance the thermal stability and moisture resistance of BT resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cao H, Xu R, Yu D (2008) Thermal and dielectric properties of bismaleimide-tiriazine resins containing octa(maleimidophenyl)silsesquioxane. J Appl Polym Sci 109(5):3114–3121

    Article  CAS  Google Scholar 

  2. Wang C-S, Leu T-S, Hsu K-R (1998) Novel bismaleimide with naphthalene side group 1 from 1-naphthaldehyde and 2 6-dimethylaniline. Polymer 39(13):2921–2927

    Article  CAS  Google Scholar 

  3. Gaku M., Suzuki K. and Nakamichi K (1978) Curable resin compositions of cyanate esters. US, US 4110364 A

  4. Yang C, Gu A, Song H, Fang ZXZ, Tong L (2007) Novel modification of cyanate ester by epoxidized polysiloxane. J Appl Polym Sci 105(4):2020–2026

    Article  CAS  Google Scholar 

  5. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944

    Article  CAS  Google Scholar 

  6. He SB, Liang GZ, Yan HX, Wang JH, Yang LL (2010) Thermal and mechanical evaluation of cyanate ester resin modified with bismaleimide and diallyl phthalate. Polym Advan Technol 21(9):640–645

    Article  CAS  Google Scholar 

  7. He SB, Liang GZ, Wang JH, Yan HX (2009) Mechanical and thermal properties of bisphenol A-based cyanate ester and diallyl phthalate blends. Polym Bull 62(2):237–246

    Article  CAS  Google Scholar 

  8. Dinakaran K, Alagar M, Kumar RS (2003) Preparation and characterization of bismaleimide/13-dicyanatobenzene modified epoxy intercrosslinked matrices. Eur Polym J 39:2225–2233

    Article  CAS  Google Scholar 

  9. Wu GL, Kou KC, Zhuo LH, Wang YQ, Zhang JQ (2013) Preparation and characterization of novel dicyanate/benzoxazine/bismaleimide copolymer. Thermochim Acta 559(14):86–91

    Article  CAS  Google Scholar 

  10. Wu G, Kou K, Chao M, Zhuo L, Zhang J, Li N (2012) Preparation and characterization of bismaleimide-triazine/epoxy interpenetrating polymer networks. Thermochim Acta 537:44–50

    Article  CAS  Google Scholar 

  11. Zeng X, Yu S, Lai M, Sun R, Wong C-P (2013) Tuning the mechanical properties of glass fiber-reinforced bismaleimide-triazine resin composites by constructing a flexible bridge at the interface. Sci Technol Advan. Mater 14(6):126–132

    Google Scholar 

  12. Zeng X, Yu S, Sun R (2013) Effect of functionalized multiwall carbon nanotubes on the curing kinetics and reaction mechanism of bismaleimide-triazine. J of Therm Anal Calorim 114(1):387–395

    Article  CAS  Google Scholar 

  13. Zeng X, Yu S, Sun R, Du R (2011) Microstructure thermal and dielectric properties of homogeneous bismaleimide-triazine/barium titanate nanocomposite films. Mater Chem Phys 131(131):387–392

    Article  CAS  Google Scholar 

  14. Hu JT, Gu AJ, Liang GZ, Zhuo DX, Yuan L (2012) Synthesis of mesoporous silica and its modification of bismaleimide/cyanate ester resin with improved thermal and dielectric properties. Polym Advan Technol 23(3):454–462

    Article  CAS  Google Scholar 

  15. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530

    Article  CAS  Google Scholar 

  16. Eigler S, Grimm S, Hof F, Hirsch A (2013) Graphene oxide: a stable carbon framework for functionalization. J Mater Chem A 1(38):11559–11562

    Article  CAS  Google Scholar 

  17. Wang Z, Shen X, Garakani MA, Lin X, Wu Y, Liu X, Sun X, Kim JK (2015) Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl Mater Inter 7(9):5538–5549

    Article  CAS  Google Scholar 

  18. Liu C, Yan HX, Chen ZY, Yuan LX, Liu TY (2015) Enhanced tribological properties of bismaleimides filled with aligned graphene nanosheets coated with Fe3O4 nanorods. J Mater Chem A 3(19):10559–10565

    Article  CAS  Google Scholar 

  19. Tseng IH, Liao YF, Chiang JC, Tsai MH (2012) Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property. Mater Chem Phys 136(1):247–253

    Article  CAS  Google Scholar 

  20. Wan YJ, Tang LC, Yan D, Zhao L, Li YB, LB W, et al. (2013) Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process. Compos Sci Technol 82(15):60–68

    Article  CAS  Google Scholar 

  21. Yan HX, Li S, Jia Y, Ma XY (2015) Hyperbranched polysiloxane grafted graphene for improved tribological performance of bismaleimide composites. RSC Adv 5(17):12578–12582

    Article  CAS  Google Scholar 

  22. Bora C, Gogoi P, Baglari S, Dolui SK (2013) Preparation of polyester resin/graphene oxide nanocomposite with improved mechanical strength. J Appl Polym Sci 129(6):3432–3438

    Article  CAS  Google Scholar 

  23. Bortz DR, Heras EG, Martin-Gullon I (2012) Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 45(1):238–245

    Article  CAS  Google Scholar 

  24. Gu J, Yang X, Lv Z, Li N, Liang C, Zhang Q (2016) Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int J Heat Mass Tran 92:15–22

    Article  CAS  Google Scholar 

  25. Wan YJ, Tang LC, Gong LX, Yan D, Li YB, LB W, Lai GQ (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480

    Article  CAS  Google Scholar 

  26. Wan YJ, Gong LX, Tang LC, Wu LB, Jiang JX (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos Part A-Appl S 64:79–89

    Article  CAS  Google Scholar 

  27. Feher FJ, Wyndham KD (1998) Amine and ester-substituted silsesquioxanes: synthesis characterization and use as a core for starburst dendrimers. Chem Commun 3(3):323–324

    Article  Google Scholar 

  28. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95(5):1409–1430

    Article  CAS  Google Scholar 

  29. Lichtenhan JD (1995) Polyhedral oligomeric silsesquioxanes - building-blocks for silsesquioxane-based polymers and hybrid materials. Comment. Inorg Chem 17(2):115–130

    CAS  Google Scholar 

  30. Xie KL, Zhang YL, Yu YH (2009) Preparation and characterization of cellulose hybrids grafted with the polyhedral oligomeric silsesquioxanes (POSS). Carbohyd Polym 77(4):858–862

    Article  CAS  Google Scholar 

  31. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta 440(1):36–42

    Article  CAS  Google Scholar 

  32. Chen DZ, Nie JR, Yi SP, WB W, Zhong YL, Liao J, Huang C (2010) Thermal behaviour and mechanical properties of novel RTV silicone rubbers using divinyl-hexa[(trimethoxysilyl)ethyl]-POSS as cross-linker. Polym Degrad Stabil 95(4):618–626

    Article  CAS  Google Scholar 

  33. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778

    Article  CAS  Google Scholar 

  34. Dittmar U, Hendan BJ, Florke U, Marsmann HC (1995) Functionalized octa-(Propylsilsesquioxanes) (3-xc(3)H(6))(8)(Si8o12) - model compounds for surface-modified silica-gels. J Organomet Chem 489(1):185–194

    Article  CAS  Google Scholar 

  35. Bissessur R, Scully SF (2007) Intercalation of solid polymer electrolytes into graphite oxide. Solid State Ionics 178(11):877–882

    Article  CAS  Google Scholar 

  36. Liu C, Yan HX, Lv Q, Li S, Niu S (2016) Enhanced tribological properties of aligned reduced graphene oxide-Fe 3 O 4@ polyphosphazene/bismaleimides composites. Carbon 102:145–153

    Article  CAS  Google Scholar 

  37. Zhang MM, Yan HX, Yang X, Liu C (2014) Effect of functionalized graphene oxide with a hyperbranched cyclotriphosphazene polymer on mechanical and thermal properties of cyanate ester composites. RSC Adv 4(86):45930–45938

    Article  CAS  Google Scholar 

  38. Bao CL, Song L, Xing WY, Yuan BH, Wilkie CA, Huang JL, Guo YQ, Hu Y (2012) Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J Mater Chem 22(13):6088–6096

    Article  CAS  Google Scholar 

  39. Liu JH, Chen GS, Jiang M (2011) Supramolecular hybrid hydrogels from Noncovalently functionalized graphene with block copolymers. Macromolecules 44(19):7682–7691

    Article  CAS  Google Scholar 

  40. Biju R, Gouri C, Nair CR (2012) Shape memory polymers based on cyanate ester-epoxy-poly (tetramethyleneoxide) co-reacted system. Eur Polym J 48(48):499–511

    Article  CAS  Google Scholar 

  41. Biju R, Nair CPR (2014) Effect of phenol end functional switching segments on the shape memory properties of epoxy-cyanate Ester system. J Appl Polym Sci 131(23):205–212

    Article  Google Scholar 

  42. Zang J, Wan YJ, Zhao L, Tang LC (2015) Fracture behaviors of TRGO-filled epoxy nanocomposites with different dispersion/Interface levels. Macromol Mater Eng 300(7):737–749

    Article  CAS  Google Scholar 

  43. Liang GZ, Zhuo D, Yuan L (2011) Preparation and properties of high-performance polysilsesquioxanes/bismaleimide-triazine hybrids. J Appl Polym Sci 120(1):360–367

    Article  Google Scholar 

  44. Yu SZ, Hing P, Hu X (2000) Dielectric properties of polystyrene-aluminum-nitride composites. J Appl Phys 88(1):398–404

    Article  CAS  Google Scholar 

  45. Wang JY, Yang SY, Huang YL, Tien HW, Chin WK, Ma CCM (2011) Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J Mater Chem 21(35):13569–13575

    Article  CAS  Google Scholar 

  46. Lin QL, LJ Q, QF L, Fang CQ (2013) Preparation and properties of graphene oxide nanosheets/cyanate ester resin composites. Polym Test 32(2):330–337

    Article  CAS  Google Scholar 

  47. Ho TH, Hwang HJ, Shieh JY, Chung MC (2009) Thermal physical and flame-retardant properties of phosphorus-containing epoxy cured with cyanate ester. React Funct Polym 69(3):176–182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by a grant from the PhD Programs Foundation of Ministry of Education of China (20136102110049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Yan, H., Yuan, L. et al. Synthesis of functionalized GO for improving the dielectric properties of bismaleimide-triazine resin. J Polym Res 23, 169 (2016). https://doi.org/10.1007/s10965-016-1071-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1071-9

Keywords

Navigation