Skip to main content
Log in

A coarse-grained model for polylactide: glass transition temperature and conformational properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this article, we present a coarse-grained (CG) model of poly(lactic acid) (PLA) developed by the iterative Boltzmann inversion (IBI) method. The coarse-grained potential was derived by matching the structural probability distribution functions to those of reference atomistic simulation. The resulting coarse-grained potential was found to be temperature-dependent when trying to reproduce the thermal expansion behavior of PLA. To satisfactory reproduce this behavior, the potential needs to be modified by a temperature factor of (T/T 0)0.3; T 0 = 327 K is the temperature at which the potential has been derived. The glass transition temperature (T g) as predicted by the modified CG potential compared favorably with those from experiment and atomistic simulation. Chain conformational properties were also evaluated in terms of a chain length (N)-radius of gyration (R g) relation and the persistence length. The model we develop was also noted to provide a considerable speed-up of computer time compared to its atomistic counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anderson KS, Schreck KM, Hillmyer MA (2008) Polym Rev 48:85–108

    Article  CAS  Google Scholar 

  2. Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  3. Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E (2003) J Appl Polym Sci 90:1731–1738

    Article  CAS  Google Scholar 

  4. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  5. Nampoothiri KM, Nair NR, John RP (2010) Bioresour Technol 101:8493–8501

    Article  Google Scholar 

  6. Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP (2007) Macromol Biosci 7:255–277

    Article  CAS  Google Scholar 

  7. Kulinski Z (2006) Piorkowska E, gadzinowska K, Stasiak M. Biomacromolecules 7:2128–2135

    Article  CAS  Google Scholar 

  8. Li H, Huneault MA (2007) Polymer 48:6855–6866

    Article  CAS  Google Scholar 

  9. Chen C-W, Huang C-I (2015) Polymer 77:189–198

    Article  CAS  Google Scholar 

  10. Wang CI, Hsu CH, Hua CC, Chen SA (2013) J Polym Res 20:188

    Article  Google Scholar 

  11. Jiang Z, Dou W, Sun T, Shen Y, Cao D (2015) J Polym Res 22:236

    Article  Google Scholar 

  12. Zhang J, Liang Y, Yan JZ, Lou JZ (2007) Polymer 48:4900–4905

    Article  CAS  Google Scholar 

  13. Jawalkar SS, Aminabhavi TM (2006) Polymer 47:8061–8071

    Article  CAS  Google Scholar 

  14. Martinez d AI, Meaurio E, Coto B, Sarasua J-R (2010) Polymer 51:4431–4438

    Article  Google Scholar 

  15. Zhou S-Q, Cheng X-C, Jin Y-L, Wu J, Zhao D-S (2013) J Appl Polym Sci 128:3043–3049

    Article  CAS  Google Scholar 

  16. Binder K, Baschnagel J, Paul W (2003) Prog Polym Sci 28:115–172

    Article  CAS  Google Scholar 

  17. Plante A, Palato S, Lebel O, Soldera A (2013) J Mater Chem C 1:1037–1042

    Article  CAS  Google Scholar 

  18. Soldera A, Metatla N (2006) Phys Rev E 74:061803

    Article  Google Scholar 

  19. Buchholz J, Paul W, Varnik F, Binder K (2002) J Chem Phys 117:7364–7372

    Article  CAS  Google Scholar 

  20. Lee WJ, Ju SP, Wang YC, Chang JG (2007) J Chem Phys 127:064902

    Article  Google Scholar 

  21. Wang Y-C, Ju S-P, Huang TJ, Wang H-H (2011) Nanoscale Res Lett 6:433

    Article  Google Scholar 

  22. Reith D, Putz M, Muller-Plathe F (2003) J Comput Chem 24:1624–1636

    Article  CAS  Google Scholar 

  23. Hsu DD, Xia WJ, Arturo SG, Keten S (2014) J Chem Theory Comput 10:2514–2527

    Article  CAS  Google Scholar 

  24. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  25. McAliley JH, Bruce DA (2011) J Chem Theory Comput 7:3756–3767

    Article  CAS  Google Scholar 

  26. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  27. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  28. Hockney RW, Goel SP, Eastwood JW (1974) J Comput Phys 14:148–158

    Article  Google Scholar 

  29. Nose S (1984) Mol Phys 100:191–198

    Article  Google Scholar 

  30. Hoover WG (1985) Phys Rev A 31:1695–1697

    Article  Google Scholar 

  31. Parrinello M, Rahman A (1981) J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  32. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  33. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  34. Li M, Liu XY, Qin JQ, Gu Y (2009) Express Polym Lett 3:665–675

    Article  CAS  Google Scholar 

  35. Yani Y, Lamm MH (2009) Polymer 50:1324–1332

    Article  CAS  Google Scholar 

  36. Fischer J, Paschek D, Geiger A, Sadowski G (2008) J Phys Chem B 112:13561–13571

    Article  CAS  Google Scholar 

  37. Prasitnok K, Wilson MR (2013) Phys Chem Chem Phys 15:17093–17104

    Article  CAS  Google Scholar 

  38. Qian H-J, Carbone P, Chen X, Karimi-Varzaneh HA, Liew CC, Müller-Plathe F (2008) Macromolecules 41:9919–9929

    Article  CAS  Google Scholar 

  39. Sasaki S, Asakura T (2003) Macromolecules 36:8385–8390

    Article  CAS  Google Scholar 

  40. Hoogsteen W, Postema AR, Pennings AJ, Ten Brinke G, Zugenmaier P (1990) Macromolecules 1990, 23:634–642

  41. De Santis P, Kovacs AJ (1968) Biopolymers 6:299–306

    Article  Google Scholar 

  42. Dorgan J, Lehermeier H, Mang M (2000) J Polym Environ 8:1–9

    Article  Google Scholar 

  43. Kanchanasopa M, Runt J (2004) Macromolecules 37:863–871

    Article  CAS  Google Scholar 

  44. Yang S, Cui Z, Qu J (2014) J Phys Chem B 118:1660–1669

    Article  CAS  Google Scholar 

  45. Gupta J, Nunes C, Jonnalagadda S (2013) Mol Pharm 10:4136–4145

    Article  CAS  Google Scholar 

  46. Li D-X, Liu B-L, Y-s L, C-l C (2008) Cryobiology 56:114–119

    Article  CAS  Google Scholar 

  47. Grosberg AY (2000) Phys Rev Lett 85:3858–3861

    Article  CAS  Google Scholar 

  48. Chu JW, Voth GA (2006) Biophys J 90:1572–1582

    Article  CAS  Google Scholar 

  49. Gautieri A, Russo A, Vesentini S, Redaelli A, Buehler MJ (2000) J Chem Theory Comput 6:1210–1218

    Article  Google Scholar 

  50. Noy A, Golestanian R (2012) Phys Rev Lett 109:228101

    Article  Google Scholar 

  51. Li X, Lehman W, Fischer S (2010) J Struct Biol 170:313–318

    Article  CAS  Google Scholar 

  52. Sulatha MS, Natarajan U (2012) Ind Eng Chem Res 51:10833–10839

    Article  CAS  Google Scholar 

  53. Aou K (2007) Effect of molecular structure on the thermal stability of amorphous and semicrystalline poly(lactic acid) Ph.D. Dissertation University of Massachusetts Amherst http://scholarworks.umass.edu/dissertations/AAI3293935

  54. Xiang TX, Anderson BD (2014) J Pharm Sci 103:2759–2771

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by Faculthy of Science, Mahasarakham University, Thailand. The author would like to thank Prof. Visit Vao-soongnern, Laboratory of Computational and Applied Polymer Science, Suranaree University of Technology, Thailand, for the insightful discussions. The author would also like to thank one of the reviewers for bringing to our attention the important of evaluating the persistence length of the model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khongvit Prasitnok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasitnok, K. A coarse-grained model for polylactide: glass transition temperature and conformational properties. J Polym Res 23, 139 (2016). https://doi.org/10.1007/s10965-016-1037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1037-y

Keywords

Navigation