Skip to main content

Solvent gradient fractionation and chain microstructure of complex branched polyethylene resin

Abstract

A complex branched polyethylene resin with excellent processing and film-forming properties is fractionated through solvent gradient fractionation (SGF) technique. Here, the good solvent is 1,2,4-trimethylbenzene (TMB) and poor solvent is ethyl cellosolve (ECS). The fractions are further analyzed using high-temperature gel permeation chromatography (GPC) coupled with triple detectors (refractive index (RI)-light scattering (LS)-viscometer (VIS)), and 13C-nuclear magnetic resonance spectroscopy (13C-NMR). The molecular weight distribution of SGF fractions is very narrow, most of them are less than 1.1. The molecular weights of SGF fractions gradually increase as the content of good solvent increases in the mixture. The fractions with different molecular weights all have branching structure, the short chain branching is major in all fractions and along with certain content of long chain branching. Branching distribution across the molecular weight distribution is discussed in detail, and branching distribution within a SGF fraction is also researched.

A complex branched polyethylene resin is fractionated through solvent gradient fractionation (SGF) according to molecular weight. It is elaborated how to select appropriate experimental condition in order to obtain fractions with narrow molecular weight distribution. And the branching distribution in each molecular weight region of the whole resin is clearly understood.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Bovey FA, Schilling FC, McCrackin FL, Wagner HL (1976) Short-chain and long-chain branching in low-density polyethylene. Macromolecules 9(1):76–80

    CAS  Article  Google Scholar 

  2. 2.

    Mattice WL (1983) Complex branch formation in low-density polyethylene. Macromolecules 16(3):487–490

    CAS  Article  Google Scholar 

  3. 3.

    Mortimer GA (1971) The effect of short-chain branch structure on the properties of low-density polyethylene. J Appl Polym Sci 15(5):1231–1235

    CAS  Article  Google Scholar 

  4. 4.

    Sun T, Brant P, Chance RR, Graessley WW (2001) Effect of short chain branching on the coil dimensions of polyolefins in dilute solution. Macromolecules 34(19):6812–6820

    CAS  Article  Google Scholar 

  5. 5.

    Fu Q, Chiu FC, He TB, Liu JP, Hsieh ET (2001) Molecular heterogeneity of metallocene short-chain branched polyethylenes and their fractions. Macromol Chem Phys 202(6):927–932

    CAS  Article  Google Scholar 

  6. 6.

    Wang C, Chu MC, Lin TL, Lai SM, Shih HH, Yang JC (2001) Microstructures of a highly short-chain branched polyethylene. Polymer 42(4):1733–1741

    CAS  Article  Google Scholar 

  7. 7.

    Xu JT, Xu XR, Feng LX (2000) Short chain branching distributions of metallocene-based ethylene copolymers. Eur Polym J 36(4):685–693

    CAS  Article  Google Scholar 

  8. 8.

    Stadler FJ, Piel C, Klimke K, Kaschta J, Parkinson M, Wilhelm M, Kaminsky W, Münstedt H (2006) Influence of type and content of various comonomers on long-chain branching of ethene/α-olefin copolymers. Macromolecules 39(4):1474–1482

    CAS  Article  Google Scholar 

  9. 9.

    Yamaguchi M, Wagner MH (2006) Impact of processing history on rheological properties for branched polypropylene. Polymer 47(10):3629–3635

    CAS  Article  Google Scholar 

  10. 10.

    Stadler FJ, Karimkhani V (2011) Correlations between the characteristic rheological quantities and molecular structure of long-chain branched metallocene catalyzed polyethylenes. Macromolecules 44(13):5401–5413

    CAS  Article  Google Scholar 

  11. 11.

    Tackx P, Tacx J (1998) Chain architecture of LDPE as a function of molar mass using size exclusion chromatography and multi-angle laser light scattering (SEC-MALLS). Polymer 39(14):3109–3113

    CAS  Article  Google Scholar 

  12. 12.

    Prasad A (1998) A quantitative analysis of low density polyethylene and linear low density polyethylene blends by differential scanning calorimetry and fourier transform infrared spectroscopy methods. Polym Eng Sci 38(10):1716–1728

    CAS  Article  Google Scholar 

  13. 13.

    Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2002) Polyethylene characterization by FTIR. Polym Test 21(5):557–563

    CAS  Article  Google Scholar 

  14. 14.

    Randall JC, Zoepfl FJ, Silverman J (1983) A 13C-NMR study of radiation-induced long-chain branching in polyethylene. Makromol Chem Rapid Commun 4(3):149–157

    CAS  Article  Google Scholar 

  15. 15.

    Galland GB, Quijada R, Rojas R, Bazan G, Komon ZJA (2002) NMR study of branched polyethylenes obtained with combined Fe and Zr catalysts. Macromolecules 35(2):339–345

    CAS  Article  Google Scholar 

  16. 16.

    Monrabal B (2013) Polyolefin characterization: recent advances in separation techniques. Adv Polym Sci 257:203–251

    CAS  Article  Google Scholar 

  17. 17.

    Pasch H, Malik MI, Macko T (2013) Recent advances in high-temperature fractionation of polyolefins. Adv Polym Sci 251:77–140

    CAS  Article  Google Scholar 

  18. 18.

    Wild L (1991) Temperature rising elution fractionation. Adv Polym Sci 98:1–47

    CAS  Article  Google Scholar 

  19. 19.

    Anantawaraskul S, Soares JBP, Wood-Adams PM (2005) Fractionation of semicrystalline polymers by crystallization analysis fractionation and temperature rising elution fractionation. Adv Polym Sci 182:1–54

    CAS  Article  Google Scholar 

  20. 20.

    Monrabal B, Romero L, Mayo N (2009) Sancho-Tello J (2009) advances in crystallization elution fractionation. Macroml Symp 282:14–24

    CAS  Article  Google Scholar 

  21. 21.

    Meunier DM, Stokich TM, Gillespie D, Smith PB (2007) Molecular topology fractionation of polystyrene stars and long chain branched polyethylene fractions. Macroml Symp 257(1):56–70

    CAS  Article  Google Scholar 

  22. 22.

    Yau WW (2007) Examples of using 3D-GPC-TREF for polyolefin characterization. Macroml Symp 257:29–45

    CAS  Article  Google Scholar 

  23. 23.

    Ortin A, Monrabal B, Sancho-Tello J (2007) Development of an automated cross-fractionation apparatus (TREF-GPC) for a full characterization of the bivariate distribution of polyolefins. Macroml Symp 257:13–28

    CAS  Article  Google Scholar 

  24. 24.

    Xu JT, Feng LX (2000) Application of temperature rising elution fractionation in polyolefins. Eur Polym J 36(5):867–878

    CAS  Article  Google Scholar 

  25. 25.

    Albrecht A, Bruell R, Macko T, Malz F, Pasch H (2009) Comparison of high-temperature HPLC, CRYSTAF and TREF for the analysis of the chemical composition distribution of ethylene-vinyl acetate copolymers. Macromol Chem Phys 210(16):1319–1330

    CAS  Article  Google Scholar 

  26. 26.

    de GE, Mallon P, Pasch H (2010) Fractionation and analysis of an impact poly(propylene) copolymer by TREF and SEC-FTIR. Macromol Mater Eng 295(4):366–373

    Article  Google Scholar 

  27. 27.

    Hosoda S (1988) Structural distribution of linear low-density polyethylenes. Polym J 20(5):383–397

    CAS  Article  Google Scholar 

  28. 28.

    Tarasova E, Poltimäe T, Krumme A, Lehtinen A, Viikna A (2011) Triple crystallization behavior of fractionated ethylene/α-olefin copolymers of different catalyst type. J Polym Res 18(2):207–216

    CAS  Article  Google Scholar 

  29. 29.

    Schouterden P, Groeninckx G, Vanderheijden B, Jansen F (1987) Fractionation and thermal-behavior of linear low-density polyethylene. Polymer 28(12):2099–2104

    CAS  Article  Google Scholar 

  30. 30.

    Hsieh ET, Tso CC, Byers JD, Johnson TW, Fu Q, Cheng SD (1997) Intermolecular structural homogeneity of metallocene polyethylene copolymers. J Macromol Sci-Phys 36(5):615–628

    Article  Google Scholar 

  31. 31.

    Xue YH, Fan YD, Bo SQ, Ji XL (2015) Microstructure characterization of a complex branched low-density polyethylene. Chin J Polym Sci 33(3):508–522

    CAS  Article  Google Scholar 

  32. 32.

    Fan YD, Xue YH, Nie W, Ji XL, Bo SQ (2009) Characterization of the microstructure of bimodal HDPE resin. Polym J 41(8):622–628

    CAS  Article  Google Scholar 

  33. 33.

    Liu YG, Bo SQ (2004) Studies of instrumental spreading in gel permeation chromatography by coupling with a two-angle laser light scattering detector. J Liq Chromatogr Relat Technol 27(4):611–627

    CAS  Article  Google Scholar 

  34. 34.

    Xue YH, Bo SQ, Ji XL (2015) Molecular chain heterogeneity of a branched polyethylene resin using cross-fractionation techniques. J Polym Res 22(8):160

    Article  Google Scholar 

  35. 35.

    Beer F, Capaccio G, Rose LJ (2001) High molecular weight tail and long-chain branching in low-density polyethylenes. J Appl Polym Sci 80(14):2815–2822

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Tao Tang for his kind supply for the resin. This study was supported by the National Basic Research Program of China (No. 2005CB623806) and National Natural Science Foundation of China (No. 20734006).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiangling Ji.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Bo, S. & Ji, X. Solvent gradient fractionation and chain microstructure of complex branched polyethylene resin. J Polym Res 23, 131 (2016). https://doi.org/10.1007/s10965-016-1026-1

Download citation

Keywords

  • Solvent gradient fractionation
  • Branch distribution
  • Molecular weight distribution
  • Complex branched polyethylene