Skip to main content
Log in

Preparation and characterization of hydroxyl ion-conducting interpenetrating polymer network based on PVA and PEI

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Novel interpenetrating polymer networks (IPNs) and semi-interpenetrating polymeric networks (sIPNs) based on polyethyleneimine (PEI) and poly(vinyl alcohol) (PVA) have been prepared via crosslinking reactions with respective crosslinking agent, 1,4-dibromobutane and glutaraldehyde (GA). IPNs, sIPNs and PEI/PVA blend membranes are characterized in detail by Fourier transform Infrared attenuated total reflection (FTIR-ATR) spectroscopy, mechanical properties, water uptake, swelling ratio, field emission scanning electron microscope (FE-SEM), hydroxide ion (OH) conductivity. Moderate water uptake and swelling ratio are obtained by the IPN derived from PEI:PVA (1:1), achieving 78.4 and 36.8 %, respectively. And the IPN also shows an acceptable OH conductivity of 4.87 mS/cm at 80 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Y-J, Qiao J, Baker R, Zhang J (2013) Alkaline polymer electrolyte membranes for fuel cell applications. Chem Soc Rev 42:5768–87

    Article  CAS  Google Scholar 

  2. Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA et al (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7:3135–91

    Article  CAS  Google Scholar 

  3. Fang J, Zhang Y, Wu Y (2012) Preparation and characterization of fluoropolymer anion exchange membrane for alkaline direct methanol fuel cells. Energy Procedia 14:133–6

    Article  CAS  Google Scholar 

  4. Xu HK, Fang J, Guo ML, Lu XH, Wei XL, Tu S (2010) Novel anion exchange membrane based on copolymer of methyl methacrylate, vinylbenzyl chloride and ethyl acrylate for alkaline fuel cells. J Membr Sci 354:206–11

    Article  CAS  Google Scholar 

  5. Luo Y, Guo J, Wang C, Chu D (2011) Tunable high-molecular-weight anion-exchange membranes for alkaline fuel cells. Macromol Chem Phys 212:2094–102

    Article  CAS  Google Scholar 

  6. Zhang Y, Fang J, Wu Y, Xu H, Chi X, Li W et al (2012) Novel fluoropolymer anion exchange membranes for alkaline direct methanol fuel cells. J Colloid Interface Sci 381:59–66

    Article  CAS  Google Scholar 

  7. Luo YT, Guo JC, Wang CS, Chu D (2010) Quaternized poly(methyl methacrylate-co-butyl acrylate-co-vinylbenzyl chloride) membrane for alkaline fuel cells. J Power Sources 195:3765–71

    Article  CAS  Google Scholar 

  8. Lee H-C, Liu K-L, Tsai L-D, Lai J-Y, Chao C-Y (2014) Anion exchange membranes based on novel quaternized block copolymers for alkaline direct methanol fuel cells. RSC Adv 4:10944–54

    Article  CAS  Google Scholar 

  9. Zhang C, Hu J, Wang X, Toyoda H, Nagatsu M, Zhang X et al (2012) Microphase separated hydroxide exchange membrane synthesis by a novel plasma copolymerization approach. J Power Sources 198:112–6

    Article  CAS  Google Scholar 

  10. Robertson NJ, Kostalik HA, Clark TJ, Mutolo PF, Abruña HD, Coates GW (2010) Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications. J Am Chem Soc 132:3400–4

    Article  CAS  Google Scholar 

  11. Liu Z, Zhu X, Wang G, Hou X, Liu D (2013) Novel crosslinked alkaline exchange membranes based on poly(phthalazinone ether ketone) for anion exchange membrane fuel cell applications. J Polym Sci B Polym Phys 51:1632–8

    CAS  Google Scholar 

  12. Jheng L-c, Hsu SL-c, Lin B-y, Hsu Y-l (2014) Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells. J Membr Sci 460:160–70

    Article  CAS  Google Scholar 

  13. Li C, Wang S, Wang W, Xie X, Lv Y, Deng C (2013) A cross-linked fluorinated poly (aryl ether oxadiazole) s using a thermal cross-linking for anion exchange membranes. Int J Hydrogen Energy 38:11038–44

    Article  CAS  Google Scholar 

  14. Wang J, Gu S, Kaspar RB, Zhang B, Yan Y (2013) Stabilizing the imidazolium cation in hydroxide-exchange membranes for fuel cells. ChemSusChem 6:2079–82

    Article  CAS  Google Scholar 

  15. Gu F, Dong H, Li Y, Si Z, Yan F (2013) Highly stable N3-Substituted imidazolium-based alkaline anion exchange membranes: experimental studies and theoretical calculations. Macromolecules 47:208–16

    Article  Google Scholar 

  16. Price SC, Williams KS, Beyer FL (2014) Relationships between structure and alkaline stability of imidazolium cations for fuel cell membrane applications. ACS Macro Lett 160–5

  17. Si Z, Qiu L, Dong H, Gu F, Li Y, Yan F (2014) Effects of Substituents and Substitution Positions on Alkaline Stability of Imidazolium Cations and Their Corresponding Anion-Exchange Membranes. ACS Appl Mater Interfaces

  18. Wang W, Wang S, Xie X, Iv Y, Ramani VK (2014) Hydroxide-ion induced degradation pathway for dimethylimidazolium groups in anion exchange membranes. J Membr Sci 462:112–8

    Article  CAS  Google Scholar 

  19. Si Z, Sun Z, Gu F, Qiu L, Yan F (2014) Alkaline stable imidazolium-based ionomers containing poly(arylene ether sulfone) side chains for alkaline anion exchange membranes. J Mater Chem A 2:4413–21

    Article  CAS  Google Scholar 

  20. Lin X, Liang X, Poynton SD, Varcoe JR, Ong AL, Ran J et al (2013) Novel alkaline anion exchange membranes containing pendant benzimidazolium groups for alkaline fuel cells. J Membr Sci 443:193–200

    Article  CAS  Google Scholar 

  21. Li N, Guiver MD, Binder WH (2013) Towards high conductivity in anion-exchange membranes for alkaline fuel cells. ChemSusChem 6:1376–83

    Article  CAS  Google Scholar 

  22. Pan J, Li Y, Zhuang L, Lu JT (2010) Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90 degrees C. Chem Commun 46:8597–9

    Article  CAS  Google Scholar 

  23. Jasti A, Prakash S, Shahi VK (2013) Stable and hydroxide ion conductive membranes for fuel cell applications: chloromethyaltion and amination of poly(ether ether ketone). J Membr Sci 428:470–9

    Article  CAS  Google Scholar 

  24. Qiao J, Fu J, Liu L, Liu Y, Sheng J (2012) Highly stable hydroxyl anion conducting membranes poly(vinyl alcohol)/poly(acrylamide-co-diallyldimethylammonium chloride) (PVA/PAADDA) for alkaline fuel cells: effect of cross-linking. Int J Hydrogen Energy 37:4580–9

    Article  CAS  Google Scholar 

  25. Gopi KH, Peera SG, Bhat SD, Sridhar P, Pitchumani S (2014) Preparation and characterization of quaternary ammonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) as anion exchange membrane for alkaline polymer electrolyte fuel cells. Int J Hydrogen Energy 39:2659–68

    Article  CAS  Google Scholar 

  26. Wang ED, Zhao TS, Yang WW (2010) Poly (vinyl alcohol)/3-(trimethylammonium) propyl-functionalized silica hybrid membranes for alkaline direct ethanol fuel cells. Int J Hydrogen Energy 35:2183–9

    Article  CAS  Google Scholar 

  27. Wu S, Li F, Wang H, Fu L, Zhang B, Li G (2010) Effects of poly (vinyl alcohol) (PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer 51:6203–11

    Article  CAS  Google Scholar 

  28. Moradian H, Fasehee H, Keshvari H, Faghihi S (2014) Poly(ethyleneimine) functionalized carbon nanotubes as efficient nano-vector for transfecting mesenchymal stem cells. Colloids Surf B 122:115–25

    Article  CAS  Google Scholar 

  29. Park SH, Yang HN, Lee DC, Park KW, Kim WJ (2014) Electrochemical properties of polyethyleneimine-functionalized Pt-PEI/carbon black as a catalyst for polymer electrolyte membrane fuel cell. Electrochim Acta 125:141–8

    Article  CAS  Google Scholar 

  30. Wen S, Zheng F, Shen M, Shi X (2013) Surface modification and PEGylation of branched polyethyleneimine for improved biocompatibility. J Appl Polym Sci 128:3807–13

    Article  CAS  Google Scholar 

  31. Leroy D, Martinot L, Mignonsin P, Strivay D, Weber G, Jérôme C et al (2003) Complexation of uranyl ions by polypyrrole doped by sulfonated and phosphonated polyethyleneimine. J Appl Polym Sci 88:352–9

    Article  CAS  Google Scholar 

  32. Srinivasa Rao P, Smitha B, Sridhar S, Krishnaiah A (2006) Preparation and performance of poly(vinyl alcohol)/polyethyleneimine blend membranes for the dehydration of 1,4-dioxane by pervaporation: comparison with glutaraldehyde cross-linked membranes. Sep Purif Technol 48:244–54

    Article  Google Scholar 

  33. Devi DA, Smitha B, Sridhar S, Jawalkar SS, Aminabhavi TM (2007) Novel sodium alginate/polyethyleneimine polyion complex membranes for pervaporation dehydration at the azeotropic composition of various alcohols. J Chem Technol Biotechnol 82:993–1003

    Article  CAS  Google Scholar 

  34. Tsai CE, Lin CW, Hwang BJ (2010) A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation. J Power Sources 195:2166–73

    Article  CAS  Google Scholar 

  35. Miyatake K, Zhou H, Watanabe M (2004) Proton conductive polyimide electrolytes containing fluorenyl groups: synthesis, properties, and branching effect. Macromolecules 37:4956–60

    Article  CAS  Google Scholar 

  36. Xiong Y, Fang J, Zeng QH, Liu QL (2008) Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. J Membr Sci 311:319–25

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, D., Gong, Y., Yan, Q. et al. Preparation and characterization of hydroxyl ion-conducting interpenetrating polymer network based on PVA and PEI. J Polym Res 23, 126 (2016). https://doi.org/10.1007/s10965-016-1020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1020-7

Keywords

Navigation