Skip to main content
Log in

Synthesis and application of a cyclopolymer bearing a propylphosphonic acid and a propylcarboxylic acid pendants in the same repeating unit

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Diallyl[3-(diethoxyphosphoryl)propyl](3-ethoxycarbonylpropyl)ammonium chloride [ (CH2CH=CH2)2N+{(CH2)3PO3Et2} {(CH2)3CO2Et} Cl], a new diallyl quaternary ammonium salt, has been cyclopolymerized to its cationic polyelectrolyte having pyrrolidine rings embedded in the polymer backbone. The polymer represents the first example of a cyclopolymer in which each repeating unit contains a propylphosphonate as well as a propylcarboxylate pendant. The hydrolysis of one, two or all the three-ester groups in the polymer afforded a series of pH-responsive macromolecules having identical degree of polymerization, which permitted a meaningful comparison of their solution behaviors. Apparent pK as of the triprotic repeating unit have been determined to be 2.52, 5.32 for 9.02 for the functionalities –PO3H2, −CO2H, and –PO3H, respectively. The completely hydrolyzed polymer containing PO3H2 and CO2H groups demonstrated remarkable antiscalant behavior; at a concentration of 10 ppm, it inhibited the scaling of CaSO4 from its supersaturated solution with an inhibition efficiency of 100 % for over 500 min. The polymer may thus be exploited as an antiscalant in reverse osmosis plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Butler GB (1992) Cyclopolymerization and cyclocopolymerization. Marcel Dekker, New York

    Google Scholar 

  2. Kudaibergenov S, Jaeger W, Laschewsky A (2006) Polymeric betaines: synthesis, characterization, and application. Adv Polym Sci 201:157–224

    Article  CAS  Google Scholar 

  3. Singh PK, Singh VK, Singh M (2007) Zwitterionic polyelectrolytes: a review. e-Polymers 30:1–34

    Google Scholar 

  4. Laschewsky A (2014) Structures and synthesis of Zwitterionic polymers. Polymers 6:1544–1601

    Article  CAS  Google Scholar 

  5. Abdollahi M, Ziaee F, Alamdari P, Koolivand H (2013) A comprehensive study on the kinetics of aqueous free-radical homo- and copolymerization of acrylamide and diallyldimethylammonium chloride by online 1H-NMR spectroscopy. J Polym Res 20:239

    Article  Google Scholar 

  6. Popescu I, Suflet DM, Mihai M (2012) Influence of the comonomer structure and of the initial pH on the characteristics of polyelectrolyte complexes based on maleic acid copolymers. J Polym Res 19:9958

    Article  Google Scholar 

  7. Al-Hamouz OCS, Ali SA (2012) pH‐responsive polyphosphonates using butler’s cyclopolymerization. J Polym Sci Part A Polym Chem 50:3580–3591

    Article  CAS  Google Scholar 

  8. Abu-Thabit NY, Al-Muallem HA, Ali SA (2011) The pH‐responsive cycloterpolymers of diallyldimethylammonium chloride, 3‐(N, N‐diallylammonio) propanesulfonate, and sulfur dioxide. J Appl Polym Sci 120:3662–3673

    Article  CAS  Google Scholar 

  9. Salamone JC, Volksen W, Olson AP, Israel SC (1978) Aqueous solution properties of a poly (vinyl imidazolium sulphobetaine). Polymer 19:1157–1162

    Article  CAS  Google Scholar 

  10. Wielema TA, Engberts JBFN (1987) Zwitterionic polymers—I. Synthesis of a novel series of poly (vinylsulphobetaines). Effect of structure of polymer on solubility in water. Eur Polym J 23:947–950

    Article  CAS  Google Scholar 

  11. Higgs PG, Joanny JF (1991) Theory of polyampholyte solutions. J Chem Phys 94:1543–1554

    Article  CAS  Google Scholar 

  12. Skouri M, Munch JP, Candau SJ, Nyret S, Candau F (1994) Conformation of neutral polyampholyte chains in salt solutions. Macromolecules 27:69–76

    Article  CAS  Google Scholar 

  13. Liu C, Gu X, Cui M, Xu Q, Li R (2014) A novel ternary copolymerized polyzwitterionic of poly (AM/DMAM/MAEDAPS): synthesis and solution properties. J Polym Res 21:620

    Article  CAS  Google Scholar 

  14. Davey RJ (1982) The role of additives in precipitation processes, industrial crystallization 81. Jancic SJ, de Jong EJ (eds) North-Holland Publishing Co. 123–135

  15. Rahardianto A, McCool BC, Cohen Y (2008) Reverse osmosis desalting of inland brackish water of high gypsum scaling propensity: kinetics and mitigation of membrane mineral scaling. Environ Sci Technol 42:4292–4297

    Article  CAS  Google Scholar 

  16. Amjad Z (2011) Effect of surfactants on gypsum scale inhibition by polymeric inhibitors. Desalin Water Treat 36:270–279

    Article  CAS  Google Scholar 

  17. Hasson D, Shemer H, Sher A (2011) State of the art of friendly “green” scale control inhibitors: a review article. Ind Eng Chem Res 50:7601–7607

    Article  CAS  Google Scholar 

  18. Amjad Z (1985) Applications of antiscalants to control calcium sulfate scaling in reverse osmosis systems. Desalination 54:263–276

    Article  CAS  Google Scholar 

  19. Ali SA, Abu-Thabit NY, Al-Muallem HA (2010) Synthesis and solution properties of a pH-responsive cyclopolymer of zwitterionic ethyl 3-(N, N-diallylammonio)propanephosphonate. J Polym Sci A Polym Chem 48:5693–5703

    Article  CAS  Google Scholar 

  20. Ali SA, Kazi IW, Rahman F (2015) Synthesis and evaluation of phosphate−free antiscalants to control CaSO4 2H2O scale formation in reverse osmosis desalination plants. Desalination 357:36–44

    Article  CAS  Google Scholar 

  21. Pike RM, Cohen RA (1960) Organophosphorus polymers. I. Peroxide-initiated polymerization of diethyl and diisopropyl vinylphosphonate. J Polym Sci 44:531–538

    Article  CAS  Google Scholar 

  22. Monroy Soto VM, Galin JC (1984) Poly (sulphopropylbetaines): 2. Dilute solution properties. Polymer 25:254–262

    Article  Google Scholar 

  23. Rullens F, Devillers M, Laschewsky A (2004) New regular, amphiphilic poly (ampholyte) s: synthesis and characterization. Macromol Chem Phys 205:1155–1166

    Article  CAS  Google Scholar 

  24. Pearson JF, Slifkin MA (1972) The infrared spectra of amino acids and dipeptides. Spectrochim Acta Part A 28:2403–2417

    Article  CAS  Google Scholar 

  25. Butler GB, Angelo RJ (1957) Preparation and polymerization of unsaturated quaternary ammonium compounds. VIII. A proposed alternating intramolecular-intermolecular chain propagation. J Am Chem Soc 79:3128–3131

    Article  CAS  Google Scholar 

  26. Vynck VD, Goethals EJ (1997) Synthesis and polymerization of N, N‐diallylpyrrolidinium bromide. Macromol Rapid Commun 18:149–156

    Article  Google Scholar 

  27. Everaers R, Johner A, Joanny J-F (1997) Complexation and precipitation in polyampholyte solutions. Europhys Lett 37:275–280

    Article  CAS  Google Scholar 

  28. Candau F, Joanny J-F (1996) In: Salamone JC (ed) Polyampholytes (properties in aqueous solution), vol 7. CRC Press, Boca Raton, pp 5462–5476

    Google Scholar 

  29. Wittmer J, Johner A, Joanny J-F (1993) Random and alternating polyampholytes. Europhys Lett 24:263–268

    Article  CAS  Google Scholar 

  30. Barbucci R, Casolaro M, Danzo N, Barone V, Ferruti P, Angeloni A (1983) Effect of different shielding groups on the polyelectrolyte behavior of polyamines. Macromolecules 16:456–462

    Article  CAS  Google Scholar 

  31. Barbucci R, Casolaro M, Ferruti P, Nocentini M (1986) Spectroscopic and calorimetric studies on the protonation of polymeric amino acids. Macromolecules 19:1856–1861

    Article  CAS  Google Scholar 

  32. Nishida K, Kaji K, Kanaya T, Fanjat N (2002) Determination of intrinsic viscosity of polyelectrolyte solutions. Polymer 43:1295–1300

    Article  CAS  Google Scholar 

  33. Butt FH, Rahman F, Baduruthamal U (1995) Pilot plant evaluation of advanced vs. conventional scale inhibitors for RO desalination. Desalination 103:189–198

    Article  CAS  Google Scholar 

  34. Reitz RL (1984) Development of a broad-spectrum antiscalant for reverse osmosis systems, technical proceedings of the water supply improvement association, Orlando, FL, May 13–18, 1984. Vol. I: Sess. 1–6, Topsfield, Mass., s.a. F 1–26

  35. Liu D, Dong W, Li F, Hui F, Lédion J (2012) Comparative performance of polyepoxysuccinic acid and polyaspartic acid on scaling inhibition by static and rapid controlled precipitation methods. Desalination 304:1–10

    Article  CAS  Google Scholar 

  36. David H, Hilla S, Alexander S (2011) State of the art of friendly “green” scale control inhibitors: a review article. Ind Eng Chem Res 50:7601–7607

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH)—King Abdulaziz City for Science and Technology – through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM), the Kingdom of Saudi Arabia, award number (11-ADV2132-04). The authors gratefully acknowledge the facilities provided by KFUPM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaikh A. Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.A., Haladu, S.A. & El-Sharif, A.M.Z. Synthesis and application of a cyclopolymer bearing a propylphosphonic acid and a propylcarboxylic acid pendants in the same repeating unit. J Polym Res 23, 167 (2016). https://doi.org/10.1007/s10965-016-1006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1006-5

Keywords

Navigation