Skip to main content

Advertisement

Log in

Biodegradable PPC/(PVA-TPU) ternary blend blown films with enhanced mechanical properties

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Biodegradable films of poly(propylene carbonate)/poly(vinyl alcohol)-thermoplastic polyurethane [PPC/(PVA-TPU)] ternary blends were successfully prepared by melting blending method. The mechanical properties of poly(propylene carbonate) blown film were greatly improved by blending PPC with PVA-TPU. In order to afford the melt processing of PVA, the PVA-TPU binary blend was firstly prepared using thermoplastic polyurethane as a polymeric plasticizer. The rheological behavior, mechanical properties and morphology of these blends were studied. Considering its melt viscosity and thermally processing temperature, the PVA-50%TPU, as a modifier, was blended with PPC to prepare PPC/(PVA-TPU) ternary blend. SEM observation revealed a basic one-phase morphological structure with very good interfacial adhesion between the extremely blurred PPC and PVA-TPU two components. Meanwhile, the miscibility of the ternary components was verified by only one glass-transition temperature obtained from DMA tests. The tensile strength and tear strength of PPC/(PVA-TPU) blown films were determined at different temperatures. The results demonstrate that the mechanical properties of PPC/(PVA-TPU) films were enhanced dramatically at low temperature when compared with neat PPC. At room temperature, PPC/30 %(PVA-50%TPU) blown film exhibited a tensile strength of 26 MPa, and an elongation at break of 484.0 %. Its tear strength in the take-up direction is 124.1 kN/m, and the one in machine direction is 141.9 kN/m. At a low temperature of 0 °C, PPC/30 %(PVA-50%TPU) exhibited a tensile strength of 40.7 MPa and tear strength of 107 kN/m, which are 153 % and 142 % of those of neat PPC respectively. The blending of PPC with the PVA plasticized with TPU provides a practical way to extend the application of the new biodegradable polymer of PPC in the area of blown films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bugoni L, Krause L, Virginia PM (2001) Mar Pollut Bull 42:1330–1334

    Article  CAS  Google Scholar 

  2. Jun WP, Seung SIJ (2002) Appl Polym Sci 86:647–655

    Article  Google Scholar 

  3. Young JK, Park OOJ (1999) Environ Polym Degrad 7:53–66

    Article  Google Scholar 

  4. Tsutomu O, Lee SHJ (2005) Appl Polym Sci 97:1107–1114

    Article  Google Scholar 

  5. Inoue S, Koinuma H, Tsurata TJ (1969) Polym Sci Polym Lett Ed 7:287–292

    Article  CAS  Google Scholar 

  6. Ree M, Hwang YT, Kim JS, Kim H, Kim G, Kim HS (2006) Catal Today 115:134–145

    Article  CAS  Google Scholar 

  7. Wang SJ, Tjong SC, Du LC, Zhao XS, Zhao XS, Meng YZJ (2002) Appl Polym Sci 85:2327–2334

    Article  CAS  Google Scholar 

  8. Zhu Q, Meng YZ, Tjong SC, Zhao XS, Chen YL (2002) Polym Int 51:1079–1085

    Article  CAS  Google Scholar 

  9. Quadrelli EA, Centi G, Duplan JL, Perathoner S (2011) ChemSus Chem 4:1194–1215

    Article  CAS  Google Scholar 

  10. Ge XC, Xu Y, Meng YZ, Li RKY (2005) Compos Sci Technol 65:2219–2225

    Article  CAS  Google Scholar 

  11. Xu J, Li RKY, Xu Y, Meng YZ (2005) Eur Polym J 41:881–888

    Article  CAS  Google Scholar 

  12. Qiu FR, Chen SM, Tan L, Ping ZH (2004) Polymer 45:3045–3053

    Article  Google Scholar 

  13. Jiao J, Wang SJ, Xiao M, Xu Y, Meng YZ (2007) Polym Eng Sci 47:174–180

    Article  CAS  Google Scholar 

  14. Wang XL, Du FG, Meng YZ, Li RKY (2006) Mater Lett 60:509–513

    Article  CAS  Google Scholar 

  15. Wang XL, Li RKY, Cao YX, Meng YZ (2007) Mater Des 28:1934–1939

    Article  CAS  Google Scholar 

  16. Pang MZ, Qiao JJ, Jiao J, Wang SJ, Xiao M, Meng YZ (2008) J Appl Polym Sci 107:2854–2860

  17. Li XH, Meng YZ, Wang SJ, Rajulu AV, Tjong SCJ (2004) Polym Sci Part B: Polym Phys 42:666–675

    Article  CAS  Google Scholar 

  18. Chen GJ, Wang YY, Wang SJ, Xiao M, Meng YZJ (2013) Appl Polym Sci 128:390–399

    Article  CAS  Google Scholar 

  19. Finch CA (1992) Poly(vinyl alcohol) Development. Wiley, Chichester, England, pp. 18–32

    Google Scholar 

  20. Peppas NA, Tennenhouse DJ (2004) Drug Deli Sci Tec 14:291–297

    Article  CAS  Google Scholar 

  21. Lee KJ, Lee J, Hong JY, Jang J (2009) Macromol Res 17:476–482

    Article  CAS  Google Scholar 

  22. Kuljanin J, Comor MI, Djokovic V, Nedeljkovic JM (2006) Mater Chem Phys 95:67–71

    Article  CAS  Google Scholar 

  23. Al-Bermany AKJ, Jabbar SA (2012) Advances in Physics Theories and Applications 5:1–8

    Google Scholar 

  24. Hodge RM, Bastow TJ, Edward GH, Simon GP, Hill AJ (1996) Macromolecules 29:8137–8143

    Article  CAS  Google Scholar 

  25. Haralabakopoulos AA, Tsiourvas D, Paleos CMJ (1998) Appl Polym Sci 69:1885–1890

    Article  CAS  Google Scholar 

  26. Hodge RM, Edward GH, Simon GP (1996) Polymer 37:1371–1376

    Article  CAS  Google Scholar 

  27. Thierry CCD, Jean-PMiippe GM (1998) US Patent 5:753,752

    Google Scholar 

  28. Lu P-C, Mead BNJ (1984) US Patent 4:464,438

    Google Scholar 

  29. Boubakri A, Elleuch K, Guermazi N, Ayedi HF (2009) Mater Des 30:3958–3965

    Article  CAS  Google Scholar 

  30. Bueno-Ferrer C, Hablot E, del Carmen Garrigós M, Bocchini S, Averous L, Jiménez A (2012) Polym Degrad Stab 97:1964–1969

    Article  CAS  Google Scholar 

  31. Seidenstücker T, Fritz HG (1999) e 51:93–102

    Google Scholar 

  32. Seidenstücker T, Fritz HG (1998) Polym Degrad Stab 59:279–285

    Article  Google Scholar 

  33. Hao Y, Ge H, Han L, Liang H, Zhang H, Dong L (2013) Polym Bull 70:1991–2003

    Article  CAS  Google Scholar 

  34. Guo J, Liu M, Liu Y, Hu C, Xia Y, Zhang H, Gong Y (2014) J Appl Polym Sci 131:23

    Google Scholar 

  35. Jiang X, Jiang T, Zhang X, Zhang X, Dai H (2013) Polym Eng Sci 53:1181–1186

    Article  CAS  Google Scholar 

  36. Zhang Z, Lee JH, Lee SH, Heo SB, Pittman CU (2008) Polymer 49:2947–2956

    Article  CAS  Google Scholar 

  37. Xu J, Li RKY, Meng YZ (2006) Mater Res Bull 41:244–252

    Article  Google Scholar 

  38. Yao M, Deng H, Mai F, Wang K, Zhang Q, Chen F, Fu Q (2011) Express Polym Lett 5:937

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation Of China (No. 21,376,276), the special-funded program on National Key Scientific Instruments and Equipment development of China (No. 2012YQ230043), Guangdong Province Sci & Tech Bureau (Key Strategic Project No. 2008 A080800024), and the fundamental research funds for the Central Universities

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuanjin Wang or Yuezhong Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Chen, G., Xiao, M. et al. Biodegradable PPC/(PVA-TPU) ternary blend blown films with enhanced mechanical properties. J Polym Res 23, 80 (2016). https://doi.org/10.1007/s10965-016-0970-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0970-0

Keyword

Navigation