Skip to main content
Log in

Fabrication of thermo-sensitive optical switches based on lanthanide-polyoxometalates and their “on-off” luminescence controlled by temperature

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The temperature-responsive luminescent nanocomposites were prepared by the combination of poly (N-isopropylacrylamide) (PNIPAM) with lanthanide-polyoxometalates/SiO2 spheres, exhibiting controlled reversible luminescent behavior with change in temperature. The structures and properties of nanocomposites were characterized by transmission electron microscopy, scanning electron microscope, FT-IR, UV-vis, dynamic light scattering and luminescence spectra. The research shows that the nanocomposites in aqueous solution display “on–off” luminescence by simple temperature stimuli. For example, the hybrid nanocomposites of PNIPAM/Eu-polyoxometalate/SiO2 in aqueous solution show bright red luminescence under UV light, which could be observed by the naked eye when the temperature is below the lower critical solution temperature (LCST), showing the “on” state. However, the red luminescence of nanocomposites in aqueous solution is significantly decreased when temperature is above LCST, showing the “off” state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Han M, Zhang HY, Yang LX, Jiang Q, Liu Y (2008) A reversible luminescent lanthanide switch based on a Dibenzo[24]-Crown-8-Dipicolinic acid conjugate. Org Lett 10:5557–5560

    Article  CAS  Google Scholar 

  2. Pasatoiu TD, Madalan AM, Kumke MU, Tiseanu C, Andruh M (2010) Temperature switch of LMCT role: From quenching to sensitization of europium emission in a ZnII-EuIII binuclear complex. Inorg Chem 49:2310–2315

    Article  CAS  Google Scholar 

  3. Yao JL, Gao X, Sun WL, Fan XZ, Shi S, Yao TM (2012) A naked-eye on − off − on molecular “light switch” based on a reversible “conformational switch” of g-quadruplex DNA. Inorg Chem 51:12591–12593

    Article  CAS  Google Scholar 

  4. Wang XT, Wang JQ, Tsunashima R, Pan K, Cao B, Song YF (2013) Electrospun self-supporting nanocomposite films of Na9[EuW10O36]·32H2O/PAN as pH-Modulated luminescent switch. Ind Eng Chem Res 52:2598–2603

    Article  CAS  Google Scholar 

  5. Zhou ZG, Hu H, Yang H, Yi T, Huang KW, Yu MX, Li FY, Huang CH (2008) Up-conversion luminescent switch based on photochromic diarylethene and rare-earth nanophosphors. Chem Commun 4786–4788. doi:10.1039/B809021A

  6. Hu LZ, Bian Z, Li HJ, Han S, Yuan YL, Gao LX, Xu GB (2009) [Ru(bpy)2dppz]2+ electrochemiluminescence switch and its applications for DNA interaction study and label-free ATP Aptasensor. Anal Chem 81:9807–9811

    Article  CAS  Google Scholar 

  7. Shan XC, Zhang HB, Chen L, Wu MY, Jiang FL, Hong MC (2013) A multi-stimuli-responsive luminescent material reversible switching colors via temperature and mechanical force. Cryst Growth Des 13:1377–1381

    Article  CAS  Google Scholar 

  8. Tropiano M, Kilah NL, Morten M, Rahman H, Davis JJ, Beer PD, Faulkner S (2011) Reversible luminescence switching of a redox-active ferrocene_europium dyad. J Am Chem Soc 133:11847–11849

    Article  CAS  Google Scholar 

  9. Ding ZJ, Zhang YM, Teng X, Liu Y (2011) Controlled photophysical behaviors between dibenzo-24-crown-8 bearing terpyridine moiety and fullerene-containing ammonium salt. J Org Chem 76:1910–1913

    Article  CAS  Google Scholar 

  10. Wang ZL, Zhang RL, Ma Y, Peng AD, Fu HB, Yao JN (2010) Chemically responsive luminescent switching in transparent flexible self-supporting [EuW10O36]9−agarose nanocomposite thin films. J Mater Chem 20:271–277

    Article  Google Scholar 

  11. Cui GH, Chen SY, Jiang B, Zhang Y, Qiu NN, Satoh T, Kakuchi T, Duan Q (2013) Synthesis and characterization of novel thermoresponsive fluorescence complexes based on copolymers with rare earth ions. Opt Mater 35:2250–2256

    Article  CAS  Google Scholar 

  12. Song QS, Yang Y, Gao K, Ma HH (2013) Study on the novel rare-earth nanocrystals/PNIPAM complex hydrogels prepared by surface-initiated living radical polymerization. J Lumin 136:437–443

    Article  CAS  Google Scholar 

  13. Ngadaonye JI, Cloonan MO, Geever LM, Higginbotham CL (2011) Synthesis and characterisation of thermo-sensitive terpolymer hydrogels for drug delivery applications. J Polym Res 18:2307–2324

    Article  CAS  Google Scholar 

  14. Li LX, Lu B, Zhang Y, Xing XD, Wu XY, Liu ZL (2015) Multi-sensitive copolymer hydrogels of N-isopropylacrylamidewith several polymerizable azobenzene-containing monomers. J Polym Res 22:176

    Article  Google Scholar 

  15. Tally M, Atassi Y (2015) Optimized synthesis and swelling properties of a pH-sensitive semi-IPN superabsorbent polymer based on sodium alginate-g-poly (acrylic acid-co-acrylamide) and polyvinylpyrrolidone and obtained via microwave irradiation. J Polym Res 22:181

    Article  Google Scholar 

  16. Gupta SK, Yadav AK, Bhattacharya D, Jha SN, Natarajan V (2015) Visible light emitting Ln3+ ion (Ln = Sm, Eu and Dy) as a structural probe: A case study with SrZrO3. J Lumin 164:1–22

    Article  CAS  Google Scholar 

  17. Mei Y, Yan B (2015) Photoluminescent hybrid materials of lanthanide (Eu3+, Sm3+) polyoxometalates and polymer resin through ionic liquid linker. Colloid Polym Sci 293:817–822

    Article  CAS  Google Scholar 

  18. Gupta A, Brahme N, Bisen DP (2014) Electroluminescence and photoluminescence of rare earth (Eu, Tb) doped Y2O3 nanophosphor. J Lumin 155:112–118

    Article  CAS  Google Scholar 

  19. Kogure H, Nanami S, Masuda Y, Toyama Y, Kubota K (2005) Hydration and dehydration behavior of N-isopropylacrylamide gel particles. Colloid Polym Sci 283:1163–1171

    Article  CAS  Google Scholar 

  20. Stöber W, Fink A, Bohn EJ (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  21. Peacock RD, Weakley TJR (1971) Heteropolytungstate complexes of the lanthanide elements. Part I. Preparation and reactions. J Chem Soc A 1836–1839. doi:10.1039/J19710001836

  22. Wang J, Fan SH, Zhao WQ, Lu XL, Li WK (2013) Bifunctional composite microspheres of silica/lanthanide-polyoxometalates/Au: Study on luminescence and catalytic properties. Thin Solid Films 548:306–312

    Article  CAS  Google Scholar 

  23. Pan YV, Wesley RA, Luginbuhl R, Denton DD, Ratner BD (2001) Plasma polymerized N-isopropylacrylamide: Synthesis and characterization of a smart thermally responsive coating. Biomacromolecules 2:32–36

    Article  CAS  Google Scholar 

  24. Wang J, Wang HS, Fu LS, Liu FY, Zhang HJ (2002) Study on highly ordered luminescent Langmuir–Blodgett films of heteropolytungstate complexes containing lanthanide. Thin Solid Films 415:242–247

    Article  CAS  Google Scholar 

  25. Crowther HM, Vincent B (1998) Swelling behavior of poly-N-isopropylacrylamide microgel particles in alcoholic solutions. Colloid Polym Sci 276:46–51

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from National Nature Science Foundation of China (21571074) and self-determined research funds of CCNU from the colleges’ basic research and operation of MOE (CCNU15A02016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhao, W., Zhao, M. et al. Fabrication of thermo-sensitive optical switches based on lanthanide-polyoxometalates and their “on-off” luminescence controlled by temperature. J Polym Res 23, 76 (2016). https://doi.org/10.1007/s10965-016-0968-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0968-7

Keywords

Navigation