Skip to main content
Log in

Synthesis and characterization of aryl boron-containing thermoplastic phenolic resin with high thermal decomposition temperature and char yield

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Phenol, zinc acetate dihydrate and paraformaldehyde are firstly performed to synthesize thermoplastic phenolic resin (PR), then phenylboronic acid (PBA) and other two boron compounds (4-hydroxymethyl phenylboronic acid & boronic acid) are introduced to fabricate the boron-containing thermoplastic phenolic resins (BPRs). The corresponding molecular structure, softening points, thermal decomposition temperature and char yield ratio of the BPRs are characterized and investigated by FTIR, NMR, XPS and TGA. Compared to pure thermoplastic PR, all the BPRs present relatively higher softening points, more excellent thermal decomposition temperature and higher char yield values. BPR-a exhibits the optimal thermal decomposition temperature (T 5 of 317.4 °C) and char yield ratio at 800 °C (69.6 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choi MH, Byun HY, Chung IJ (2002) The effect of chain length of flexible diacid on morphology and mechanical property of modified phenolic resin. Polymer 43:4437–4444

    Article  CAS  Google Scholar 

  2. Wang Y, Wang S, Bian C, Zhong Y, Jing X (2015) Effect of chemical structure and cross-link density on the heat resistance of phenolic resin. Polym Degrad Stab 111:239–246

    Article  CAS  Google Scholar 

  3. Strzemiecka B, Voelkel A, Chmielewska D, Sterzyński T (2014) Influence of different fillers on phenolic resin abrasive composites. Comparison of inverse gas chromatographic and dynamic mechanical-thermal analysis characteristics. International Journal of Adhesion & Adhesives 51:81–86

    Article  CAS  Google Scholar 

  4. Taheri-Behrooz F, Memar Maher B, Shokrieh MM (2015) Mechanical properties modification of a thin film phenolic resin filled with nano silica particles. Comput Mater Sci 96:411–415

    Article  CAS  Google Scholar 

  5. Foyer G, Chanfi B-H, Boutevin B, Caillol S, David G (2016) New method for the synthesis of formaldehyde-free phenolic resins from lignin-based aldehyde precursors. Eur Polym J 74:296–309

    Article  CAS  Google Scholar 

  6. Cardona F, Kin-Tak AL, Fedrigo J (2012) Novel phenolic resins with improved mechanical and toughness properties. Journal of Applied Polymer and Science 123:2131–2139

    Article  CAS  Google Scholar 

  7. Liu Y, Jing X (2008) Miscibility, morphology, and thermal properties of hyperbranched polyborates modified phenolic resins. Journal of Polymer Science Part B Polymer Physics 46:2012–2021

    Article  CAS  Google Scholar 

  8. Ma H, Wei G, Liu Y, Zhang X, Gao J, Huang F, Tan B, Song Z, Qiao J (2005) Effect of elastomeric nanoparticles on properties of phenolic resin. Polymer 46:10568–10573

    Article  CAS  Google Scholar 

  9. Kaynak C, Cagatay O (2006) Rubber toughening of phenolic resin by using nitrile rubber and amino silane. Polym Test 25:296–305

    Article  CAS  Google Scholar 

  10. Shojaei A, Faghihi M (2010) Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend. Mater Sci Eng A 527:917–926

    Article  Google Scholar 

  11. Situ Y, Hu J, Huang H, Fu H, Zeng H, Chen H (2007) Synthesis, Properties and Application of a Novel Epoxidized Soybean Oil-toughened Phenolic Resin. Chin J Chem Eng 15:418–423

    Article  CAS  Google Scholar 

  12. Choi MH, Jeon BH, Chung IJ (2000) The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites. Polymer 41:3243–3252

    Article  CAS  Google Scholar 

  13. Bian L, Xiao J, Zeng J, Xing S, Yin C, Jia A (2014) Effects of thermal treatment on the mechanical properties of poly(p-phenylene benzobisoxazole) fiber reinforced phenolic resin composite materials. Mater Des 54:230–235

    Article  CAS  Google Scholar 

  14. Bian L, Xiao J, Zeng J, Xing S, Yin C (2014) Microstructural interpretation of the ablative properties of phenolic-quartz hybrid fabric reinforced phenolic resin composites. Mater Des 62:424–429

    Article  CAS  Google Scholar 

  15. Wang D-C, Chang G-W, Chen Y (2008) Preparation and thermal stability of boron-containing phenolic resin/clay nanocomposites. Polym Degrad Stab 93:125–133

    Article  CAS  Google Scholar 

  16. Eesaee M, Shojaei A (2014) Effect of nanoclays on the mechanical properties and durability of novolac phenolic resin/woven glass fiber composite at various chemical environments. Compos A: Appl Sci Manuf 63:149–158

    Article  CAS  Google Scholar 

  17. Bahramian AR, Kokabi M, Famili MHN, Beheshty MH (2008) High temperature ablation of kaolinite layered silicate/phenolic resin/asbestos cloth nanocomposite. J Hazard Mater 150:136–145

    Article  CAS  Google Scholar 

  18. Cunningham N, Lefe’vre M, Dodelet J-P, Thomas Y, Pelletier. S (2005) Structural and mechanical characterization of as-compacted powder mixtures of graphite and phenolic resin. Carbon 43:3054–3066

    Article  CAS  Google Scholar 

  19. Zhang Y, Lee S, Yoonessi M, Liang K, Pittman CU (2006) Phenolic resin–trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: Structure and properties. Polymer 47:2984–2996

    Article  CAS  Google Scholar 

  20. Liu L, Ye Z (2009) Effects of modified multi-walled carbon nanotubes on the curing behavior and thermal stability of boron phenolic resin. Polym Degrad Stab 94:1972–1978

    Article  CAS  Google Scholar 

  21. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M (2016) Organice-inorganic nanohybrids of novolac phenolic resin and carbon nanotube: High carbon yields by using carbon nanotube aerogel and resin incorporation into aerogel network. Microporous Mesoporous Mater 224:58–67

    Article  CAS  Google Scholar 

  22. Liu Y-Z, Li Y-F, Yang Y-G, Wen Y-F, Wang M-Z (2012) Preparation and properties of graphene oxide-carbon fiber/phenolic resin composites. New Carbon Materials 27:377–384

    CAS  Google Scholar 

  23. Si J, Li J, Wang S, Li Y, Jing X (2013) Enhanced thermal resistance of phenolic resin composites at low loading of graphene oxide. Compos A: Appl Sci Manuf 54:166–172

    Article  CAS  Google Scholar 

  24. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M (2016) Novolac phenolic resin and graphene aerogel organic-inorganic nanohybrids: High carbon yields by resin modification and its incorporation into aerogel network. Polym Degrad Stab 124:1–14

    Article  CAS  Google Scholar 

  25. Abdalla MO, Ludwick A, Mitchell T (2003) Boron-modified phenolic resins for high performance applications. Polymer 44:7353–7359

    Article  CAS  Google Scholar 

  26. Martín C, Ronda JC, Cádiz V (2006) Boron-containing novolac resins as flame retardant materials. Polym Degrad Stab 91:747–754

    Article  Google Scholar 

  27. Bian C, Wang Y, Wang S, Zhong Y, Liu Y, Jing X (2015) Influence of borate structure on the thermal stability of boron-containing phenolic resins: A DFT study. Polym Degrad Stab 119:190–197

    Article  CAS  Google Scholar 

  28. Imamura R, Matsui K, Takeda S, Ozaki J, Oya A (1999) A new role for phosphorus in graphitization of phenolic resin. Carbon 37:261–267

    Article  CAS  Google Scholar 

  29. Gao J, Liu Y, Wang F (2001) Structure and properties of boron - containing bisphenol-A formaldehyde resin. Eur Polym J 37:207–210

    Article  Google Scholar 

  30. Gao J, Xia L, Liu Y (2004) Structure of a boron-containing bisphenol-F formaldehyde resin and kinetics of its thermal degradation. Polym Degrad Stab 83:71–77

    Article  CAS  Google Scholar 

  31. Jun Q, Wang G, Feng Y (2007) Synthesis and properties of boron modified phenolic resin with different boron content. Journal of Tongji University (Natural Science) 35:381–384

    Google Scholar 

  32. Kawamoto AM, Pardini LC, Diniz MF, Lourenço VL, Takahashi MFK (2010) Synthesis of a boron modified phenolic resin. J Aerosp Technol Manag 2:169–182

    Article  CAS  Google Scholar 

  33. Liu Y, Jing X (2007) Pyrolysis and Structure of Hyperbranched Polyborate Modified Phenolic Resins. Carbon 45:1965–1971

    Article  CAS  Google Scholar 

  34. Wang S, Jing X, Wang Y, Si J (2014) High char yield of aryl boron-containing phenolic resins: The effect of phenylboronic acid on the thermal stability and carbonization of phenolic resins. Polym Degrad Stab 99:1–11

    Article  CAS  Google Scholar 

  35. Wang S, Wang Y, Bian C, Zhong Y, Jing X (2015) The thermal stability and pyrolysis mechanism of boron-containingphenolic resins: The effect of phenyl borates on the char formation. Appl Surf Sci 331:519–529

    Article  CAS  Google Scholar 

  36. Nomoto M, Yamagishi T, Nakamoto Y (2006) Determination of branch density for high-ortho novolac and random novolac using 13C-NMR[J]. Journal of Network Polymer 27:210–217

    CAS  Google Scholar 

  37. Kashiwakura S, Takahashi T, Maekawa H, Nagasaka T (2010) Application of 11B MAS-NMR to the characterization of boron in coal fly ash generated from Nantun coal. Fuel 89:1006–1011

    Article  CAS  Google Scholar 

  38. Knop A, Pilato LA (1985) Phenolic resins: chemistry, applications, performance and future direction. Springer, Berlin

    Book  Google Scholar 

  39. Gu J, Guo Y, Lv Z, Geng W, Zhang Q (2015) Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities. Compos A: Appl Sci Manuf 78:95–101

    Article  CAS  Google Scholar 

  40. Gu J, Yang X, Lv Z, Li N, Liang C, Zhang Q (2016) Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int J Heat Mass Transf 92:15–22

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China (No. 51403175); Shaanxi Natural Science Foundation of Shaanxi Province (No. 2015JM5153); Open Fund from National Defense Science and Technology Key Laboratory (No. 2015AFDL018) and the Fundamental Research Funds for the Central Universities (Nos. 3102015ZY066 and 3102015BJ(II)JGZ020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Chen, L., Gu, J. et al. Synthesis and characterization of aryl boron-containing thermoplastic phenolic resin with high thermal decomposition temperature and char yield. J Polym Res 23, 97 (2016). https://doi.org/10.1007/s10965-016-0966-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0966-9

Keywords

Navigation