Skip to main content
Log in

Reversible crosslinked low density polyethylenes: structure and thermal properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the present study, low density polyethylene (LDPE) has been crosslinked at 170 °C with three different systems by a) using peroxide, b) peroxide and accelerator and c), peroxide, accelerator and sulfur. The effect of chemical crosslinking on LDPE structure has been investigated using torque measurements, Fourier transform infrared spectroscopy (FTIR), wide angle X-ray diffraction (WAXS), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Therefore, effects of each crosslinking system on the structural and thermal properties of the material in terms of crystallinity, thermal transitions and stability have been discussed. The reversible crosslinking of LDPE allow the recyclability of polyolefins, increasing the thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chum PS, Swogger KW (2008) Olefin polymer technologies—History and recent progress at The Dow Chemical Company. Prog Polym Sci 33(8):797–819. doi:10.1016/j.progpolymsci.2008.05.003

    Article  CAS  Google Scholar 

  2. Moez AA, Aly SS, Elshaer YH (2012) Effect of gamma radiation on low density polyethylene (LDPE) films: Optical, dielectric and FTIR studies. Spectrochim Acta, Part A 93:203–207. doi:10.1016/j.saa.2012.02.031

    Article  CAS  Google Scholar 

  3. Saki TA (2015) Reactive melt blending of low-density polyethylene with poly (acrylic acid). Arab J Chem 8(2):191–199. doi:10.1016/j.arabjc.2011.05.021

    Article  CAS  Google Scholar 

  4. Basfar AA (2002) Flammability of radiation cross-linked low density polyethylene as an insulating material for wire and cable. Radiat Phys Chem 63(3–6):505–508. doi:10.1016/S0969-806X(01)00545-X

    Article  CAS  Google Scholar 

  5. Jana RN, Nando GB (2003) Thermogravimetric analysis of blends of low-density polyethylene and poly(dimethyl siloxane) rubber: the effects of compatibilizers. J Appl Polym Sci 90(3):635–642. doi:10.1002/app.12599

    Article  CAS  Google Scholar 

  6. AlMaadeed MA, Nógellová Z, Janigová I, Krupa I (2014) Improved mechanical properties of recycled linear low-density polyethylene composites filled with date palm wood powder. Mater Des 58:209–216. doi:10.1016/j.matdes.2014.01.051

    Article  CAS  Google Scholar 

  7. Basfar AA, Idriss Ali KM, Mofti SM (2003) UV stability and radiation-crosslinking of linear low density polyethylene and low density polyethylene for greenhouse applications. Polym Degrad Stab 82(2):229–234. doi:10.1016/S0141-3910(03)00216-7

    Article  CAS  Google Scholar 

  8. Priola A, Bongiovanni R, Gozzelino G (1994) Solvent influence on the radical grafting of maleic anhydride on low density polyethylene. Eur Polym J 30(9):1047–1050. doi:10.1016/0014-3057(94)90197-X

    Article  CAS  Google Scholar 

  9. Smedberg A, Hjertberg T, Gustafsson B (1997) Crosslinking reactions in an unsaturated low density polyethylene. Polymer 38(16):4127–4138. doi:10.1016/S0032-3861(96)00994-9

    Article  CAS  Google Scholar 

  10. Krupa I, Luyt AS (2000) Thermal properties of uncross-linked and cross-linked LLDPE/wax blends. Polym Degrad Stab 70(1):111–117. doi:10.1016/S0141-3910(00)00097-5

    Article  CAS  Google Scholar 

  11. Khonakdar HA, Jafari SH, Wagenknecht U, Jehnichen D (2006) Effect of electron-irradiation on cross-link density and crystalline structure of low- and high-density polyethylene. Radiat Phys Chem 75(1):78–86. doi:10.1016/j.radphyschem.2005.05.014

    Article  CAS  Google Scholar 

  12. Kang T-K, Ha C-S (2000) Effect of processing variables on the crosslinking of HDPE by peroxide. Polym Test 19(7):773–783. doi:10.1016/S0142-9418(99)00048-3

    Article  CAS  Google Scholar 

  13. Andersson LHU, Hjertberg T (2006) The effect of different structure parameters on the crosslinking behaviour and network performance of LDPE. Polymer 47(1):200–210. doi:10.1016/j.polymer.2005.11.023

    Article  CAS  Google Scholar 

  14. Anbarasan R, Babot O, Maillard B (2004) Crosslinking of high-density polyethylene in the presence of organic peroxides. J Appl Polym Sci 93(1):75–81. doi:10.1002/app.20390

    Article  CAS  Google Scholar 

  15. Kim KJ, Ok YS, Kim BK (1992) Crosslinking of polyethylene with peroxide and multifunctional monomers during extrusion. Eur Polym J 28(12):1487–1491. doi:10.1016/0014-3057(92)90140-W

    Article  CAS  Google Scholar 

  16. Suyama S, Ishigaki H, Watanabe Y, Nakamura T (1995) Crosslinking of polyethylene by dicumyl peroxide in the presence of 2,4-diphenyl-4-methyl-1-pentene. Polym J 27(4):371–375. doi:10.1295/polymj.27.371

    Article  CAS  Google Scholar 

  17. Qu B, Rårby B (1995) Radiation crosslinking of polyethylene with electron beam at different temperatures. Polym Eng Sci 35(14):1161–1166. doi:10.1002/pen.760351406

    Article  CAS  Google Scholar 

  18. Tretinnikov ON, Ogata S, Ikada Y (1998) Surface crosslinking of polyethylene by electron beam irradiation in air. Polymer 39(24):6115–6120. doi:10.1016/S0032-3861(98)00075-5

    Article  CAS  Google Scholar 

  19. Salehi SMA, Mirjalili G, Amrollahi J (2004) Effects of high-energy electron beam on low-density polyethylene materials containing EVA. J Appl Polym Sci 92(2):1049–1052. doi:10.1002/app.20079

    Article  CAS  Google Scholar 

  20. Gheysari D, Behjat A (2001) Radiation crosslinking of LDPE and HDPE with 5 and 10 MeV electron beams. Eur Polym J 37(10):2011–2016. doi:10.1016/S0014-3057(01)00084-2

    Article  CAS  Google Scholar 

  21. Kuan H-C, Kuan J-F, Ma C-CM, Huang J-M (2005) Thermal and mechanical properties of silane-grafted water crosslinked polyethylene. J Appl Polym Sci 96(6):2383–2391. doi:10.1002/app.21694

    Article  CAS  Google Scholar 

  22. Sirisinha K, Chuaythong P (2014) Reprocessable silane-crosslinked polyethylene: property and utilization as toughness enhancer for high-density polyethylene. J Mater Sci 49(14):5182–5189. doi:10.1007/s10853-014-8226-z

    Article  CAS  Google Scholar 

  23. Shah GB, Fuzail M, Anwar J (2004) Aspects of the crosslinking of polyethylene with vinyl silane. J Appl Polym Sci 92(6):3796–3803. doi:10.1002/app.20381

    Article  CAS  Google Scholar 

  24. Hlangothi SP, Krupa I, Djoković V, Luyt AS (2003) Thermal and mechanical properties of cross-linked and uncross-linked linear low-density polyethylene–wax blends. Polym Degrad Stab 79(1):53–59. doi:10.1016/S0141-3910(02)00238-0

    Article  CAS  Google Scholar 

  25. Magana S, Zerroukhi A, Jegat C, Mignard N (2010) Thermally reversible crosslinked polyethylene using Diels–Alder reaction in molten state. React Funct Polym 70(7):442–448. doi:10.1016/j.reactfunctpolym.2010.04.007

    Article  CAS  Google Scholar 

  26. Teramoto N, Arai Y, Shibata M (2006) Thermo-reversible Diels–Alder polymerization of difurfurylidene trehalose and bismaleimides. Carbohydr Polym 64(1):78–84. doi:10.1016/j.carbpol.2005.10.029

    Article  CAS  Google Scholar 

  27. Liu YL, Hsieh CY, Chen YW (2006) Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels-Alder reaction. Polymer 47(8):2581–2586. doi:10.1016/j.polymer.2006.02.057

    Article  CAS  Google Scholar 

  28. Defize T, Thomassin J-M, Alexandre M, Gilbert B, Riva R, Jérôme C (2016) Comprehensive study of the thermo-reversibility of Diels–Alder based PCL polymer networks. Polymer 84:234–242. doi:10.1016/j.polymer.2015.11.055

    Article  CAS  Google Scholar 

  29. Yoshie N, Saito S, Oya N (2011) A thermally-stable self-mending polymer networked by Diels–Alder cycloaddition. Polymer 52(26):6074–6079. doi:10.1016/j.polymer.2011.11.007

    Article  CAS  Google Scholar 

  30. Bouhelal S, Lewis KW (2009) Method to make reversibly cross-linked isotactic polypropylene. US7517942B1. US7517942B1

  31. Khellaf S, Khoffi F, Tabet H, Lallam A, Bouhelal S, Cagiao ME, Benachour D, BaltáCalleja FJ (2012) Study of iPP crosslinking by means of dynamic and steady rheology measurements. J Appl Polym Sci 124(4):3184–3191. doi:10.1002/app.34996

    Article  CAS  Google Scholar 

  32. Bouhelal S, Cagiao ME, Khellaf S, Benachour D, Baltá Calleja FJ (2008) Structure and properties of new reversibly crosslinked iPP/LDPE blends. J Appl Polym Sci 109(2):795–804. doi:10.1002/app.28194

    Article  CAS  Google Scholar 

  33. Bouhelal S, Cagiao ME, Benachour D, Calleja FJB (2007) Structure modification of isotactic polypropylene through chemical crosslinking: toughening mechanism. J Appl Polym Sci 103(5):2968–2976. doi:10.1002/app.25406

    Article  CAS  Google Scholar 

  34. ASTM D2765-01 (2001) Standard test methods for determination of gel content and swell ratio of crosslinked ethylene plastics. ASTM International, West Conshohocken, http://www.astm.org

  35. The infrared spectra atlas of monomers and polymers (1983) Saddler Research Laboratories. Lewiston, NY

    Google Scholar 

  36. Yu S, Park C, Hong SM, Koo CM (2014) Thermal conduction behaviors of chemically cross-linked high-density polyethylenes. Thermochim Acta 583:67–71. doi:10.1016/j.tca.2014.03.018

    Article  CAS  Google Scholar 

  37. Mishra JK, Raychowdhury S, Das CK (2000) Effect of interchain crosslinking on the shrinkability of the blends consisting of grafted low-density polyethylene and carboxylated nitrile rubber. Mater Lett 46(4):212–218. doi:10.1016/S0167-577X(00)00172-5

    Article  CAS  Google Scholar 

  38. Matthews JL, Peiser HS, Richards RB (1949) The X-ray measurement of the amorphous content of polythene samples. Acta Crystallogr 2(2):85–90. doi:10.1107/S0365110X49000199

    Article  CAS  Google Scholar 

  39. Patterson AL (1939) The scherrer formula for X-Ray Particle Size determination. Phys Rev 56(10):978–982

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by MINECO (MAT2013-47902-C2-1-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fernández-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saci, H., Bouhelal, S., Bouzarafa, B. et al. Reversible crosslinked low density polyethylenes: structure and thermal properties. J Polym Res 23, 68 (2016). https://doi.org/10.1007/s10965-016-0965-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0965-x

Keywords

Navigation