Advertisement

Journal of Polymer Research

, 23:20 | Cite as

Structure and surface properties of chitosan/PEO/gelatin nanofibrous membrane

  • Mykhailo BarchukEmail author
  • Pavla Čapková
  • Zdeňka Kolská
  • Jindřich Matoušek
  • David Poustka
  • Lucie Šplíchalová
  • Oldřich Benada
  • Marcela Munzarová
Original Paper

Abstract

Present paper deals with the effect of gelatin on the structure, phase composition, and morphology of the electrospun chitosan/PEO nanofibers. Special attention is paid to the surface chemistry, surface structure and surface morphology of nanocomposite fibers, as these parameters are crucial for biomedical applications and for eventual subsequent surface modification. Gelatin prevents the crystallization of PEO and chitosan and has significant effect on the surface properties of chitosan/PEO/gelatin nanofibers, especially after the cross-linking. During the heating at 130 °C, gelatin appears on the surface of the nanofibers, what results in a large amount of the surface cracks, as well as in the dramatic changes of the surface chemistry and consequently surface adhesion properties. In addition, we observe regions with a continuous gelatin layer between fibers after the cross-linking, what leads to a significant decrease of the porosity of the nanofiber textile. Special attention has been paid to the complex characterization of the structure and surface chemistry of composite nanofibrous materials in order to predict their surface properties, crucial for wound dressing and tissue engineering.

Keywords

Chitosan Gelatin Nanofiber textile X-ray diffraction Zeta potential SEM 

Notes

Acknowledgments

The authors gratefully acknowledge the support by the project LO1509 of the Ministry of Education, Youth and Sports of the Czech Republic and by Operational Program Prague – Competitiveness project (CZ.2.16/3.1.00/24023) supported by EU EU and the SGS project of Internal grant agency UJEP.

References

  1. 1.
    Sun K, Li ZH (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. eXPRESS Polym Lett 4(5):342–361CrossRefGoogle Scholar
  2. 2.
    Gudjónsdóttir M, Gacutan MD Jr, Mendes AC, Chronakis IS, Jespersen L, Karlsson AH (2015) Effects of electrospun chitosan wrapping for dry-ageing of beef, as studied by microbiological, physicochemical and low-field nuclear magnetic resonance analysis. Food Chem 184:167–175CrossRefGoogle Scholar
  3. 3.
    Mi F-L, Tan Y-C, Liang H-F, Sung H-S (2002) In vivo biocompatibility and degradability of a novel injectable- chitosan-based implant. Biomaterials 23:181–191CrossRefGoogle Scholar
  4. 4.
    Angelova N, Manolova N, Rashkov I, Maximova V, Bogdanova S, Domard A (1995) Preparation and properties of modified chitosan films for drug release. J Bioact Compat Polym 10:285–298Google Scholar
  5. 5.
    Selmer-Olsen E, Ratnaweera HC, Pehrson R (1996) A novel treatment process for dairy wastewater with chitosan produced from shrimp-shell waste. Water Sci Technol 34:33–40CrossRefGoogle Scholar
  6. 6.
    Leceta I, Guerrero P, Ibarburu I, Duenas MT, de la Caba K (2013) Characterization and antimicrobial analysis of chitosan-based films. J Food Eng 116:889–899CrossRefGoogle Scholar
  7. 7.
    Min BM, Lee SW, Lim JN, You Y, Lee TS, Kang PH, Park WH (2004) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45:7137–7142CrossRefGoogle Scholar
  8. 8.
    Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H (2004) Electrospinning of chitosan. Macromol Rapid Commun 25:1600–1605CrossRefGoogle Scholar
  9. 9.
    Hasegawa M, Isogai A, Onabe F, Usuda M (1992) Dissolving states of cellulose and chitosan in trifluoroacetic acid. J Appl Polym Sci 45:1857–1863CrossRefGoogle Scholar
  10. 10.
    Ohkawa K, Minato K-I, Kumagai G, Hayashi S, Yamamoto H (2006) Chitosan nanofiber. Biomacromolecules 7:3291–3294CrossRefGoogle Scholar
  11. 11.
    Sangsanoh P, Suwantong O, Neamnark A, Cheepsunthornc P, Pavasantd P, Supaphola P (2010) In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. Eur Polym J 46:428–440CrossRefGoogle Scholar
  12. 12.
    Sangsanoh P, Supaphol P (2006) Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules 7:2710–2714CrossRefGoogle Scholar
  13. 13.
    Haider S, Park S-Y (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J Membr Sci 328:90–96CrossRefGoogle Scholar
  14. 14.
    Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432CrossRefGoogle Scholar
  15. 15.
    Vrieze SD, Westbroeak P, Camp TV, van Langenhove L (2007) Electrospinning of chitosan nanofibrous structures: Feasibility study. J Mater Sci 42:8029–8034CrossRefGoogle Scholar
  16. 16.
    Spasova M, Manolova N, Paneva D, Rashkov I (2004) Preparation of chitosan-containing nanofibres by electrospinning of chitosan/poly(ethylene oxide) blend solutions. E-polymers 56:1–12Google Scholar
  17. 17.
    Duan B, Dong C, Yuan X, Yao K (2004) Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J Biomater Sci Polym Ed 15(6):797–811CrossRefGoogle Scholar
  18. 18.
    Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26(31):6176–6184CrossRefGoogle Scholar
  19. 19.
    Ohkawa K, Kitagawa T, Yamamoto H (2004) Preparation and characterization of chitosan-gellan hybrid capsules formed by self-assembly at an aqueous solution interface. Macromol Mater Eng 289(1):33–40CrossRefGoogle Scholar
  20. 20.
    Li L, Hsieh Y-L (2006) Chitosan biocomponent nanofibers and nanoporous fibers. Carbohydr Res 341(3):374–381CrossRefGoogle Scholar
  21. 21.
    Park WH, Jeong L, Yoo DI, Hudson S (2004) Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer 45(21):7151–7157CrossRefGoogle Scholar
  22. 22.
    Bao W-W, He L, Zhang Y-Z, Chang L-N (2006) Influence of blend on the electrospun silk fibroin nanofibers’ morphology. J Soochow Univ Eng Sci Ed 26(1):20–23Google Scholar
  23. 23.
    Peesan M, Rujiravanit R, Supaphol P (2006) Electrospinning of hexanoyl chitosan/polylactide blends. J Biomater Sci Polym Ed 17(5):547–565CrossRefGoogle Scholar
  24. 24.
    Chen Z, Mo X, Qing F (2006) Electrospinning of collagen-chitosan complex. Mater Lett 61(16):3490–3494CrossRefGoogle Scholar
  25. 25.
    Zeugolis DI, Khew ST, Yew ESY, Ekaputra AK, Tong YW, Yung LYL, Hutmacher DW, Shepard C, Raghunath M (2008) Electro-spinning of pure collagen nano-fibers – just an expansive way to make gelatin. Biomaterials 29:2293–2305CrossRefGoogle Scholar
  26. 26.
    Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, Roh S, Cho JJ, Park WH, Min BM (2006) Electtrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461CrossRefGoogle Scholar
  27. 27.
    Yang L, Fitie CFC, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J (2008) Mechanical properties of single elctrospun collagen type I fibers. Biomaterials 29:955–962CrossRefGoogle Scholar
  28. 28.
    Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A Physicochem Eng Asp 313–314:183–188CrossRefGoogle Scholar
  29. 29.
    Weadock KS, Miller EJ, Bellincampi LD, Zawadsky JP, Dunn MG (1995) Physical cross-linking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res 29(11):1373–1379CrossRefGoogle Scholar
  30. 30.
    Fujimori E (1965) Ultraviolet light-induced change in collagen macromolecules. Biopolymers Pept Sci Section 3(2):115–119CrossRefGoogle Scholar
  31. 31.
    Cooper DR, Davidson RJ (1965) The effect of ultraviolet irradiation on soluble collagen. Biochem J 97:139–147CrossRefGoogle Scholar
  32. 32.
    Sionkowska A, Skopinska-Wisniewska J, Gawron M, Kozlowska J, Planecka A (2010) Chemical and thermal cross-linking of collagen and elastin hydrolysates. Int J Biol Macromol 47:570–577CrossRefGoogle Scholar
  33. 33.
    Jorge-Herrero E, Fernández P, Turnay J, Olmo N, Calero P, García R, Freile I, Castillo-Olivares JL (1999) Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen. Biomaterials 20:539–545CrossRefGoogle Scholar
  34. 34.
    Čapková P, Čajka A, Kolská Z, Kormunda M, Pavlík J, Munzarová M, Dopita M, Rafaja D (2015) Phase composition and surface properties of nylon-6 nanofiber prepared by nanospider technology at various electrode distances. J Polym Res 22:101CrossRefGoogle Scholar
  35. 35.
    Kolská Z, Řezníčková A, Švorčík V (2012) Surface characterization of polymer foils. E-polymers 083:1–13Google Scholar
  36. 36.
    Yui T, Imada K, Okuyama K, Obata Y, Suzuki K, Ogawa K (1994) Molecular and crystal structures of the anhydrous form of chitosan. Macromolecules 27:7601–7605CrossRefGoogle Scholar
  37. 37.
    Zhang C, Gamble S, Ainsworth D, Slawin AMZ, Andreev YG, Bruce PG (2009) Alkali metal crystalline polymer electrolytes. Nat Mater 8:580–584CrossRefGoogle Scholar
  38. 38.
    Hall MM, Veeraraghavan VG, Rubin H, Winchell PG (1977) The approximation of symmetric X-ray peaks by Pearson type VII distributions. J Appl Crystallogr 10:66CrossRefGoogle Scholar
  39. 39.
    Švorčík V, Makajová Z, Kasálková N, Kolská Z, Bačáková L (2012) Plasma-modified and polyethylene glycol-grafted polymers for potential tissue engineering applications. J Nanosci Nanotechnol 12:6665–6671CrossRefGoogle Scholar
  40. 40.
    Kolská Z, Řezníčková A, Nagyová M, Slepičková Kasálková N, Sajdl P, Slepička P, Švorčík V (2014) Plasma activated polymers grafted with cyteamine for bio-application. Polym Degrad Stab 101:1–9CrossRefGoogle Scholar
  41. 41.
    Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28:3074–3082CrossRefGoogle Scholar
  42. 42.
    Faucheux N, Schweiss R, Lutzow K, Werner C, Groth T (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25:2721–2730CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Mykhailo Barchuk
    • 1
    Email author
  • Pavla Čapková
    • 1
  • Zdeňka Kolská
    • 1
  • Jindřich Matoušek
    • 1
  • David Poustka
    • 1
    • 2
  • Lucie Šplíchalová
    • 1
  • Oldřich Benada
    • 1
    • 3
  • Marcela Munzarová
    • 2
  1. 1.Faculty of ScienceJ. E. Purkyně UniversityÚstí nad LabemCzech Republic
  2. 2.Nanovia, s.r.o.Litvínov-ChudeřínCzech Republic
  3. 3.Institute of Microbiology of the ASCRPrague 4Czech Republic

Personalised recommendations