Skip to main content
Log in

Double equilibrium melting temperatures and zero growth temperature of PVDF in PVDF/graphene composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly (vinylidene fluoride) (PVDF)/graphene composites were prepared through the melt blending method. The growths of PVDF spherulites in the composites at various temperatures were observed by means of polarized optical microscope (POM), and the melting behaviors were investigated with differential scanning calorimetry (DSC). The POM images showed that the spherulites morphology of PVDF in both pure PVDF and the composite samples presented the same well-defined Maltese-cross texture, and the radial growth rates of PVDF spherulites decreased with increasing crystallization temperature. Two equilibrium melting temperatures of PVDF were obtained and the equilibrium melting temperature of the samples crystallized above 160 °C was higher than that crystallized below 160 °C, which was attributed to the different crystal structures. Zero growth temperature of native PVDF spherulite was obtained according to the samples that crystallized above 160 °C. There is no obvious influence of adding graphene on the zero growth temperature of PVDF in the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Coccorullo I, Pantani R, Titomanlio G (2008) Spherulitic nucleation and growth rates in an iPP under continuous shear flow. Macromolecules 41(23):9214–9223

    Article  CAS  Google Scholar 

  2. Long Y, Shanks RA, Stachurski ZH (1995) Kinetics of polymer crystallisation. Prog Polym Sci 20(4):651–701

    Article  CAS  Google Scholar 

  3. Hobbs, JK (2002) Crystallization Kinetics, in Encyclopedia of Polymer Science and Technology. Wiley

  4. Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17(1):71–73

    Article  CAS  Google Scholar 

  5. Hoffman JD, Weeks JJ (1962) Rate of spherulitic crystallization with chain folds in polychlorotrifluoroethylene. J Chem Phys 37(8):1723–1741

    Article  CAS  Google Scholar 

  6. Hoffman J, Davis GT, Lauritzen Jr J (1976) The rate of crystallization of linear polymers with chain folding. In: Hannay NB (ed) Treatise on Solid State Chemistry. Springer, US, pp. 497–614

  7. Hoffman JD (1983) Regime III crystallization in melt-crystallized polymers: The variable cluster model of chain folding. Polymer 24(1):3–26

    Article  CAS  Google Scholar 

  8. Hoffman JD et al. (1992) Relationship between the lateral surface free energy.sigma. and the chain structure of melt-crystallized polymers. Macromolecules 25(8):2221–2229

    Article  CAS  Google Scholar 

  9. Strobl G (2000) From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: A major route followed in polymer crystallization? Eur Phys J E 3(2):165–183

    Article  CAS  Google Scholar 

  10. Strobl G (2005) A thermodynamic multiphase scheme treating polymer crystallization and melting. Eur Phys J E 18(3):295–309

    Article  CAS  Google Scholar 

  11. Strobl G (2006) Crystallization and melting of bulk polymers: New observations, conclusions and a thermodynamic scheme. Prog Polym Sci 31(4):398–442

    Article  CAS  Google Scholar 

  12. Cho T-Y, Stille W, Strobl G (2007) Zero growth temperature and growth kinetics of crystallizing poly (ϵ-caprolactone). Colloid Polym Sci 285(8):931–934

    Article  CAS  Google Scholar 

  13. Cho TY, Stille W, Strobl G (2007) Zero growth temperature of crystallizing polyethylene. Macromolecules 40(7):2596–2599

    Article  CAS  Google Scholar 

  14. Sirota EB (2007) Polymer crystallization: metastable mesophases and morphology. Macromolecules 40(4):1043–1048

    Article  CAS  Google Scholar 

  15. Fernández-Blázquez JP et al. (2007) The two crystallization modes of mesophase forming polymers. Macromolecules 40(6):1775–1778

    Article  Google Scholar 

  16. Zhao J et al. (2011) Phase transitions in prequenched mesomorphic isotactic polypropylene during heating and annealing processes as revealed by simultaneous synchrotron SAXS and WAXD technique. J Phys Chem B 116(1):147–153

    Article  Google Scholar 

  17. Lu Y et al. (2014) Crystallization, recrystallization, and melting lines in syndiotactic polypropylene crystallized from quiescent melt and semicrystalline state Due to stress-induced localized melting and recrystallization. J Phys Chem B 118(45):13019–13023

    Article  CAS  Google Scholar 

  18. Wang Y et al. (2014) Molecular weight dependency of crystallization line, recrystallization line, and melting line of polybutene-1. Macromolecules 47(18):6401–6407

    Article  CAS  Google Scholar 

  19. Strobl G, Cho TY (2007) Growth kinetics of polymer crystals in bulk. Eur Phys J E Soft Matter 23(1):55–65

    Article  CAS  Google Scholar 

  20. Avalos F, Lopez-Manchado MA, Arroyo M (1996) Crystallization kinetics of polypropylene: 1. Effect of small additions of low-density polyethylene. Polymer 37(25):5681–5688

    Article  Google Scholar 

  21. Maiti P et al. (2002) Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules 35(6):2042–2049

    Article  CAS  Google Scholar 

  22. Xu J-Z et al. (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: A comparative study. Macromolecules 43(11):5000–5008

    Article  CAS  Google Scholar 

  23. Ansari S, Giannelis EP (2009) Functionalized graphene sheet—poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci B Polym Phys 47(9):888–897

    Article  CAS  Google Scholar 

  24. El Achaby M et al. (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide – PVDF nanocomposite films. Appl Surf Sci 258(19):7668–7677

    Article  Google Scholar 

  25. Zhang YY et al. (2012) Crystallization behavior and phase-transformation mechanism with the use of graphite nanosheets in poly(vinylidene fluoride) nanocomposites. J Appl Polym Sci 125(S1):E314–E319

    Article  CAS  Google Scholar 

  26. Han P et al. (2013) Effects of reduced graphene on crystallization behavior, thermal conductivity and tribological properties of poly(vinylidene fluoride). J Compos Mater 48(6):659–666

    Article  Google Scholar 

  27. Li J et al. (2015) Crystalline structures and crystallization behaviors of poly(l-lactide) in poly(l-lactide)/graphene nanosheet composites. Polym Chem 6(21):3988–4002

    Article  CAS  Google Scholar 

  28. Lovinger A (1982) Poly(Vinylidene Fluoride). In: Bassett DC (ed) Developments in Crystalline Polymers—1. Springer, Netherlands, pp. 195–273

    Chapter  Google Scholar 

  29. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706

    Article  CAS  Google Scholar 

  30. Gregorio R (2006) Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J Appl Polym Sci 100(4):3272–3279

    Article  CAS  Google Scholar 

  31. Gregorio R, CapitãO RC (2000) Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride). J Mater Sci 35(2):299–306

    Article  CAS  Google Scholar 

  32. Gomes J et al. (2010) Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct 19(6):065010

    Article  Google Scholar 

  33. Weinhold S, Litt MH, Lando JB (1980) The crystal structure of the γ phase of poly(vinylidene fluoride). Macromolecules 13(5):1178–1183

    Article  CAS  Google Scholar 

  34. Yu S et al. (2009) Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42(22):8870–8874

    Article  CAS  Google Scholar 

  35. Ke K et al. (2011) Crystallization behavior of poly (vinylidene fluoride)/multi-walled carbon nanotubes nanocomposites. J Mater Sci 46(5):1542–1550

    Article  CAS  Google Scholar 

  36. He L et al. (2010) Effect of multi-walled carbon nanotubes on crystallization, thermal, and mechanical properties of poly(vinylidene fluoride). Polym Compos 31(5):921–927

    CAS  Google Scholar 

  37. Yang J et al. (2011) Cooperative effect of shear and nanoclay on the formation of polar phase in poly(vinylidene fluoride) and the resultant properties. Polymer 52(21):4970–4978

    Article  CAS  Google Scholar 

  38. Buckley J et al. (2006) Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer 47(7):2411–2422

    Article  CAS  Google Scholar 

  39. Song R, Yang D, He L (2007) Effect of surface modification of nanosilica on crystallization, thermal and mechanical properties of poly(vinylidene fluoride). J Mater Sci 42(20):8408–8417

    Article  CAS  Google Scholar 

  40. Silva MP et al. (2010) α- and γ-PVDF: crystallization kinetics, microstructural variations and thermal behaviour. Mater Chem Phys 122(1):87–92

    Article  CAS  Google Scholar 

  41. Morra BS, Stein RS (1982) Melting studies of poly(vinylidene fluoride) and its blends with poly(methyl methacrylate). J Polym Sci Polym Phys Ed 20(12):2243–2259

    Article  CAS  Google Scholar 

  42. Sajkiewicz P (1999) Crystallization behaviour of poly(vinylidene fluoride). Eur Polym J 35(9):1581–1590

    Article  CAS  Google Scholar 

  43. Prest WM, Luca DJ (1975) The morphology and thermal response of high-temperature–crystallized poly(vinylidene fluoride). J Appl Phys 46(10):4136–4143

    Article  CAS  Google Scholar 

  44. Prest WM, Luca DJ (1978) The formation of the γ phase from the α and β polymorphs of polyvinylidene fluoride. J Appl Phys 49(10):5042–5047

    Article  CAS  Google Scholar 

  45. Sencadas V et al. (2010) Isothermal crystallization kinetics of poly(vinylidene fluoride) in the α-phase in the scope of the avrami equation. J Mater Sci 45(5):1328–1335

    Article  CAS  Google Scholar 

  46. Strobl G (2007) The Semicrystalline State, in The Physics of Polymers. Springer, Berlin Heidelberg, pp. 165–222

    Google Scholar 

  47. Li Y et al. (2012) Role of Ion–dipole interactions in nucleation of gamma poly(vinylidene fluoride) in the presence of graphene oxide during melt crystallization. J Phys Chem B 116(51):14951–14960

    Article  CAS  Google Scholar 

  48. Xu J-Z et al. (2011) Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules 44(8):2808–2818

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51173130, 21374077 and 51573131). Support from the Sino-Danish Centre for Education and Research (SDC) is also fully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichun Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Gong, X., Li, J. et al. Double equilibrium melting temperatures and zero growth temperature of PVDF in PVDF/graphene composites. J Polym Res 22, 244 (2015). https://doi.org/10.1007/s10965-015-0889-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0889-x

Keywords

Navigation