Skip to main content

Hyperthermia properties of magnetic polyethylenimine core/shell nanoparticles: influence of carrier and magnetic field strength


Core/shell nanoparticles of magnetic polyethylenimine (MPEI) were prepared by one-step co-precipitation process. MPEI were precipitated by mixing Fe2+/Fe3+ solution with polyethylenimine under basic media. The morphology, hydrodynamic size and the phase of the prepared magnetic nanoparticles were characterized using SEM, DLS and XRD, respectively. In addition, the functionality, thermal stability and magnetic properties were assessed using FTIR, TGA and VSM, respectively. The prepared magnetic nanoparticles able to generate local heat under alternative magnetic field caused by the delay in magnetic relaxation provide a benefit in cancer treatment. The strength effects of the applied magnetic field and the different viscosity carriers, namely water and ethanol, on the heating ability were investigated. It was an obvious rise of temperature by increasing in strength of applied magnetic field and by the exposure time. Heat transfer to the fluid was hindered by the viscosity of the carrier. The viscosity affects the heating properties through a Brownian mechanism and thus causes a significant specific absorption rate (SAR). The heating properties of the prepared MPEI nanoparticles with the highest SAR value (177.48 Wg−1) show their potential in hyperthermia application.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Illés E, Szekeres M, Kupcsik E, Tóth IY, Farkas K, Jedlovszky-Hajdúa A, Tombácz E (2014) PEGylation of surfacted magnetite core–shell nanoparticles for biomedical application. Colloids Surf A Physicochem Eng Asp 460:429–440

    Article  Google Scholar 

  2. 2.

    Gazeau F, Levy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3:831–844

    Article  CAS  Google Scholar 

  3. 3.

    Chan A, Orme RP, Fricker RA, Roach P (2013) Remote and local control of stimuli responsive materials for therapeutic applications. Adv Drug Deliv Rev 65:497–514

    Article  CAS  Google Scholar 

  4. 4.

    Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496

    Article  CAS  Google Scholar 

  5. 5.

    Creixell M, Bohórquez AC, Torres-Lugo M, Rinaldi C (2011) EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5:7124–7129

    Article  CAS  Google Scholar 

  6. 6.

    Chung SH, Hoffmann A, Bader SD, Liu C, Kay B, Makowski L, Chen L (2004) Biological sensors based on Brownian relaxation of magnetic nanoparticles. Appl Phys Lett 85:2971–2973

    Article  CAS  Google Scholar 

  7. 7.

    Suto M, Hirota Y, Mamiya H, Fujita A, Kasuya R, Tohji K, Jeyadevan B (2009) Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater 321:1493–1496

    Article  CAS  Google Scholar 

  8. 8.

    Kokabi M, Arabgol F, Manteghian M (2005) Nd2Fe14B permanent polymeric composite magnets. Iran Polym J 14:71–79

    CAS  Google Scholar 

  9. 9.

    Pickard MR, Barraud P, Chari DM (2011) The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. Biomaterials 32:2274–2284

    Article  CAS  Google Scholar 

  10. 10.

    Mahdavinia G, Iravani S, Zoroufi S, Hosseinzadeh H (2014) Magnetic and K-cross-linked -carrageenan nanocomposite beads and adsorption of crystal violet. Iran Polym J 23:335–344

    Article  CAS  Google Scholar 

  11. 11.

    Mousavian S, Ebadi-Dehaghani H, Ashouri D, Sadeghipour H, Jabbari F (2012) Effect of polymer matrix on the magnetic properties of polymer bonded magnets filled Fe3O4 nanoparticles. J Polym Res 19:1–9

    Article  CAS  Google Scholar 

  12. 12.

    Davaran S, Entezami AA (1994) A review on application of polymers in new drug delivery systems. Iran Polym J 6:273–289

    CAS  Google Scholar 

  13. 13.

    Wei S, Zhang Y, Xu J (2011) Preparation and properties of poly(acrylic acid-co-styrene)/Fe3O4 nanocomposites. J Polym Res 18:125–130

    Article  CAS  Google Scholar 

  14. 14.

    Mohammad Doulabi FS, Mohsen-Nia M (2013) Magnetic cobalt-zinc ferrite/PVAc nanocomposite: synthesis and characterization. Iran Polym J 22:9–14

    Article  Google Scholar 

  15. 15.

    Barbosa-Barros L, García-Jimeno S, Estelrich J (2014) Formation and characterization of biobased magnetic nanoparticles double coated with dextran and chitosan by layer-by-layer deposition. Colloids Surf A Physicochem Eng Asp 450:121–129

    Article  CAS  Google Scholar 

  16. 16.

    Tian J, Feng Y, Xu Y (2006) Synthesis of magnetite nanoparticles with PDLLA corona. J Polym Res 13:343–347

    Article  CAS  Google Scholar 

  17. 17.

    Bardajee G, Hooshyar Z (2013) A novel biocompatible magnetic iron oxide nanoparticles/hydrogel based on poly (acrylic acid) grafted onto starch for controlled drug release. J Polym Res 20:1–13

    Google Scholar 

  18. 18.

    Chen GJ, Wang LF (2011) Design of magnetic nanoparticles-assisted drug delivery system. Curr Pharm Des 17:2331–2351

    Article  CAS  Google Scholar 

  19. 19.

    Cheraghipour E, Javadpour S, Mehdizadeh AR (2012) Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. Biomed Sci Eng 5:715–719

    Article  Google Scholar 

  20. 20.

    Zhao DL, Wang XX, Zeng XW, Xia QS, Tang JT (2009) Preparation and inductive heating property of Fe3O4-chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia. J Alloys Compd 477:739–743

    Article  CAS  Google Scholar 

  21. 21.

    Kocbek P, Obermajer NA, Cegnar M, Kos J, Kristl J (2007) Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release 120:18–26

    Article  CAS  Google Scholar 

  22. 22.

    Ota S, Yamazaki N, Tomitaka A, Yamada T, Takemura Y (2014) Hyperthermia using antibody-conjugated magnetic nanoparticles and its enhanced effect with cryptotanshinone. Nanomaterials 4:319–330

    Article  Google Scholar 

  23. 23.

    Ghosh R, Pradhan L, Devi YP, Meena SS, Tewari R, Kumar A, Sharma S, Gajbhiye NS, Vatsa RK, Pandey BN, Ningthoujam RS (2011) Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J Mater Chem 21:13388–13398

    Article  CAS  Google Scholar 

  24. 24.

    Nesztor D, Bali K, Tóth IY, Szekeres M, Tombácz E (2015) Controlled clustering of carboxylated SPIONs through polyethylenimine. J Magn Magn Mater 380:144–149

    Article  CAS  Google Scholar 

  25. 25.

    Fajaroh F, Setyawan H (2012) Synthesis of magnetite nanoparticles by surfactant-free electrochemical method in an aqueous system. Adv Powder Technol 23:328–333

    Article  CAS  Google Scholar 

  26. 26.

    Li B, Jia D, Zhou Y, Hu Q, Cai W (2006) In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field. J Magn Magn Mater 306:223–227

    Article  CAS  Google Scholar 

  27. 27.

    Qu J, Liu G, Wang Y, Hong R (2010) Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol 21:461–467

    Article  CAS  Google Scholar 

  28. 28.

    Kim CY, Xu L, Lee EH (2014) Self-heating of magnetite nanoparticles for a potential hyperthermia application. J Korean Phys Soc 65:261–266

    Article  CAS  Google Scholar 

  29. 29.

    Estelrich J, Escribano E, Queralt J, Antònia Busquets M (2015) Review: iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16:8070–8101

    Article  CAS  Google Scholar 

  30. 30.

    Jeyadevan B (2010) Present status and prospects of magnetite nanoparticles-based hyperthermia. J Ceram Soc Jpn 118:391–401

    Article  CAS  Google Scholar 

  31. 31.

    Elsherbini AA, Saber M, Aggag M, El-Shahawy A, Shokier HA (2011) Magnetic nanoparticle-induced hyperthermia treatment under magnetic resonance imaging. Magn Reson Imaging 29:272–280

    Article  Google Scholar 

  32. 32.

    Darwish MS, Stibor I (2015) Preparation and characterization of magnetite-PDMS composites by magnetic induction heating. Mater Chem Phys 164:163–169

    Article  CAS  Google Scholar 

  33. 33.

    Piñeiro-Redondo Y, Bañobre-López M, Pardiñas-Blanco I, Goya G, López-Quintela MA, Rivas J (2011) The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett 6:383

    Article  Google Scholar 

  34. 34.

    Zhang LY, Gu HC, Wang XM (2007) Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. J Magn Magn Mater 311:228–233

    Article  CAS  Google Scholar 

  35. 35.

    Fortin JP, Wilhelm C, Servais J, Menager C, Bacri JC, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635

    Article  CAS  Google Scholar 

Download references


The results of this project LO1201 were obtained with the financial support of the Ministry of Education, Youth and Sports in the framework of the targeted support of the “National Programme for Sustainability I”, the OPR&DI project Centre for Nanomaterials, Advanced Technologies and Innovation CZ.1.05/2.1.00/01.0005 and the Project Development of Research Teams of R&D Projects at the Technical university of Liberec CZ.1.07/2.3.00/30.0024.

Author information



Corresponding author

Correspondence to Mohamed S. A. Darwish.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Darwish, M.S.A., El-Sabbagh, A. & Stibor, I. Hyperthermia properties of magnetic polyethylenimine core/shell nanoparticles: influence of carrier and magnetic field strength. J Polym Res 22, 239 (2015).

Download citation


  • Magnetic
  • Polyethylenimine
  • SAR
  • Hyperthermia