Skip to main content

Advertisement

Log in

Synthesis and characterization of novel acrylic comb-shaped copolymer containing long fluorinated side chains

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel acrylic comb-shaped copolymer containing long fluorinated side chains (ACCLF) was successfully synthesized by conventional radical polymerization of a novel mono-methacryloyloxy terminated fluorinated macromonomer (PHFBMA-MA), methyl methacrylate (MMA), isobutyl acrylate (IBA), and γ-methacryl propyl trimethoxyl silane (MPTS). GPC, FTIR, and 1H-NMR data successfully verified the synthesis. The influence of both the molecular weight and concentration of PHFBMA-MA on the surface properties of ACCLF films was investigated. By increasing both the concentration and the molecular weight of PHFBMA-MA, the surface energy of the films decreased and contact angle increased. The surface energy of ACCLF-1/3-8 with just 8 wt% PHFBMA-MA-1/3 (20.68 mN/m) was almost the same as that of the neat PHFBMA (20.36 mN/m), indicating the high efficiency of the macromonomer in lowering the surface energy of the comb-shaped copolymer. The surface composition of ACCLF was characterized and quantified by X-ray photoelectron spectroscopy (XPS). XPS results strongly confirmed that, at the same fluorinated content, long fluorinated chains modified film (9.36 % fluorine content for ACCLF-1/3-4 and 8.19 % fluorine content for ACCLF-1/6-4) showed higher fluorine concentration at the top surface than that of ACSF-4 modified film (1.52 %). ACCLF films also had excellent adhesion [on glass, tin plate, and polycarbonate (PC)], pencil hardness, and thermal properties. The novel ACCLF prepared via conventional radical polymerization not only had excellent comprehensive performance, but also has prominent potential application in large-scale industrialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saïdi S, Guittard F, Guimon C, Géribaldi S (2005) Macromol Chem Phys 206:1098–1105

    Article  Google Scholar 

  2. Saïdi S, Guittard F, Guimon C, Géribaldi S (2005) J Polym Sci Pol Chem 43:3737–3747

    Article  Google Scholar 

  3. Xu W, An Q, Hao L, Sun Z, Zhao W (2013) J Polym Res 20:1–10

    Google Scholar 

  4. Sun Y, Liu W (2012) J Polym Res 19:1–11

    Article  Google Scholar 

  5. Miao H, Cheng L, Shi W (2009) Prog Org Coat 65:71–76

    Article  CAS  Google Scholar 

  6. Yan Z, Liu W, Gao N, Ma Z, Han M (2013) J Fluor Chem 147:49–55

    Article  CAS  Google Scholar 

  7. Liu T, Pan X, Wu Y, Zhang T, Zheng Z, Ding X, Peng Y (2012) J Polym Res 19:1–8

    Article  Google Scholar 

  8. Gao N, Liu W, Ma S, Tang C, Yan Z (2012) J Polym Res 19:1–10

    Article  Google Scholar 

  9. Cui X, Gao Y, Zhong S, Zheng Z, Cheng Y, Wang H (2012) J Polym Res 19:1–7

    Article  Google Scholar 

  10. Xu W, Hao L, An Q, Wang X (2015) J Polym Res 22:1–8

    Article  Google Scholar 

  11. Li K, Wu P, Han Z (2002) Polymer 43:4079–4086

    Article  CAS  Google Scholar 

  12. Toniolo L, Poli T, Castelvetro V, Manariti A, Chiantore O, Lazzari M (2002) J Cult Herit 3:309–316

    Article  Google Scholar 

  13. Nishino T, Urushihara Y, Meguro M, Nakamae K (2004) J Colloid Interface Sci 279:364–369

    Article  CAS  Google Scholar 

  14. Han D, Zhu L, Chen Y, Li W, Feng L (2013) J Fluor Chem 156:38–44

    Article  CAS  Google Scholar 

  15. Kim DH, Lee YH, Park CC, Kim HD (2014) Colloid Polym Sci 292:173–183

    Article  CAS  Google Scholar 

  16. Hao G, Zhu L, Yang W, Chen Y (2015) Prog Org Coat 85:8–14

    Article  CAS  Google Scholar 

  17. Hao G, Zhu L, Yang W, Chen Y, Huang Q (2015) J Fluor Chem 176:1–8

    Article  CAS  Google Scholar 

  18. Chang G, He L, Liang J, Wang N, Cao R, Zhao X (2014) J Fluor Chem 158:21–28

    Article  CAS  Google Scholar 

  19. Yan Z, Liu W, Gao N, Wang H, Su K (2013) Appl Surf Sci 284:683–691

    Article  CAS  Google Scholar 

  20. Yan Z, Liu W, Wang H, Su K, Xia-Hou G (2014) J Fluor Chem 157:63–72

    Article  CAS  Google Scholar 

  21. Wang J, Mao G, Ober CK, Kramer EJ (1997) Macromolecules 30:1906–1914

    Article  CAS  Google Scholar 

  22. Wang J, Ober CK (1997) Macromolecules 30:7560–7567

    Article  CAS  Google Scholar 

  23. Sun Y, Liu W (2011) J Fluor Chem 132:9–14

    Article  CAS  Google Scholar 

  24. Saidi S, Guittard F, Guimon C, Géribaldi S (2006) Eur Polym J 42:702–710

    Article  CAS  Google Scholar 

  25. Park IJ, Lee SB, Choi CK (1997) Polymer 38:2523–2527

    Article  CAS  Google Scholar 

  26. Tsukahara Y, Tsutsumi K, Yamashita Y, Shimada S (1990) Macromolecules 23:5201–5208

    Article  CAS  Google Scholar 

  27. Tsukahara Y, Mizuno K, Segawa A, Yamashita Y (1989) Macromolecules 22:1546–1552

    Article  CAS  Google Scholar 

  28. Chen GF, Jones FN (1991) Macromolecules 24:2151–2155

    Article  CAS  Google Scholar 

  29. Miyauchi N, Kirikihira I, Li X, Akashi M (1988) J Polym Sci Pol Chem 26:1561–1571

    Article  CAS  Google Scholar 

  30. Akashi M, Yanagi T, Yashima E, Miyauchi N (1989) J Polym Sci Pol Chem 27:3521–3530

    Article  CAS  Google Scholar 

  31. Riza M, Tokura S, Iwasaki M, Yashima E, Kishida A, Akashi M (1995) J Polym Sci Pol Chem 33:1219–1225

    Article  CAS  Google Scholar 

  32. Uchida T, Furuzono T, Ishihara K, Nakabayashi N, Akashi M (2000) J Polym Sci Pol Chem 38:3052–3058

    Article  CAS  Google Scholar 

  33. Akashi M, Kirikihira I, Miyauchi N (1985) Die Angew Makromol Chem 132:81–89

    Article  CAS  Google Scholar 

  34. Akashi M, Yamashita I, Miyauchi N (1984) Die Angew Makromol Chem 122:47–152

    Article  Google Scholar 

  35. Teodorescu M, Dimonie M, Cerchez I (1999) Eur Polym J 35:247–252

    Article  CAS  Google Scholar 

  36. Teodorescu M (2002) Eur Polym J 38:841–846

    Article  CAS  Google Scholar 

  37. Sangermano M, Bongiovanni R, Malucelli G, Priola A, Thomas RR, Kausch CM, Kim Y (2006) J Polym Sci Pol Chem 44:6943–6951

    Article  CAS  Google Scholar 

  38. Park IJ, Lee SB, Choi CK (1998) Macromolecules 31:7555–7558

    Article  CAS  Google Scholar 

  39. Tang C, Liu W, Ma S, Wang Z, Hu C (2010) Prog Org Coat 69:359–365

    Article  CAS  Google Scholar 

  40. Jariwala CP, Mathias LJ (1993) Macromolecules 26:5129–5136

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Key Laboratory of Cellulose and Lignocellulosics, Guangzhou Institute of Chemistry, Chinese Academy of Sciences and the Natural Science Foundation of Guangdong Province (No. S2013010012106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Liu, W., Wang, H. et al. Synthesis and characterization of novel acrylic comb-shaped copolymer containing long fluorinated side chains. J Polym Res 22, 238 (2015). https://doi.org/10.1007/s10965-015-0877-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0877-1

Keywords

Navigation