Skip to main content
Log in

Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using silver nanoparticles deposited on polypyrrole nanofibers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Silver nanoparticles modified polypyrrole (PPy) nanofibers were fabricated and used for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) with good selectivity and high sensitivity. Polypyrrole nanofibers were prepared through electrodeposition, while silver nanoparticles were deposited on PPy nanofiber by electrodeposition and electrochemical oxidation in situ. The morphology and structure of silver nanoparticles/polypyrrole nanocomposite (Ag/PPy) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR). Compared with the bare glassy carbon electrode (GCE) and PPy/GCE, Ag/PPy modified GCE (Ag-PPy/GCE) exhibited much higher electrocatalytic activities toward oxidation of AA, DA, and UA with increasing the peak currents and decreasing the oxidation overpotentials. Cyclic voltammetry (CV) results showed that DA, AA, and UA could be detected selectively and sensitively at Ag-PPy/GCE with peak-to-peak separation of 120 mV and 170 mV for AA-DA and DA-UA, respectively. The calibration curves for AA, DA, and UA were obtained in the range of 10–580 μM, 0.5–155 μM and 2–100 μM, respectively. The lowest detection limits (S/N = 3) were 1.8 μM, 0.1 μM, and 0.5 μM for AA, DA, and UA, respectively. With good selectivity and sensitivity, the present method was applied to determination of DA in injectable medicine and UA in urine sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shi W, Liu C, Song Y, Lin N, Zhou S, Cai X (2012) An ascorbic acid amperometric sensor using over-oxidized polypyrrole and palladium nanoparticles composites. Biosens Bioeletron 38:100–106

    Article  CAS  Google Scholar 

  2. Zhang X, Cao Y, Yu S, Yang E, Xi P (2013) An electrochemical biosensor for ascorbic acid based on carbon-supported PdNi nanoparticles. Biosens Bioeletron 44:183–190

    Article  Google Scholar 

  3. Zeng Y, Zhou Y, Kong L, Zhou T, Shi G (2013) A novel composite of SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine. Biosens Bioeletron 45:25–33

    Article  CAS  Google Scholar 

  4. Ulubay S, Dursun Z (2010) Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid. Talanta 80:1461–1466

    Article  CAS  Google Scholar 

  5. Benes FM (2001) Carlsson and the discovery of dopamine. Trends Pharmacol Sci 22:46–47

  6. Huang S, Liao H, Chen D (2010) Simultaneous determination of norepinephrine, uric acid, and ascorbic acid at a screen printed carbon electrode modified with polyacrylic acid-coated multi-wall carbon nanotubes. Biosens Bioeletron 25:2351–2355

    Article  CAS  Google Scholar 

  7. Lakshmi D, Whitcombe MJ, Davis F, Sharma PS, Prasad BB (2011) Electrochemical detection of uric acid in mixed and clinical samples. Electroanalysis 23:305–320

    Article  CAS  Google Scholar 

  8. Culleton BF, Larson MG, Kannel WB, Levy D (1999) Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med 131:7–13

    Article  CAS  Google Scholar 

  9. Vulcu A, Grosan C, Muresan LM, Pruneanu S, Olenic L (2013) Modified gold electrodes based on thiocytosine/guanine-gold nanoparticles for uric and ascorbic acid determination. Electrochim Acta 88:839–846

    Article  CAS  Google Scholar 

  10. Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334:345–348

    Article  CAS  Google Scholar 

  11. Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60:769A–793A

    Article  CAS  Google Scholar 

  12. Chih YK, Yang MC (2013) An 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)-immobilized electrode for the simultaneous detection of dopamine and uric acid in the presence of ascorbic acid. Bioelectrochem 91:44–51

    Article  CAS  Google Scholar 

  13. Sun CL, Lee HH, Yang JM, Wu CC (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioeletron 26:3450–3455

    Article  CAS  Google Scholar 

  14. Gopalan AI, Lee KP, Manesh KM, Santhosh P, Kim JH, Kang JS (2007) Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode. Talanta 71:1774–1781

    Article  CAS  Google Scholar 

  15. Safavi A, Moradlou O, Tajabadi F (2006) Simultaneous determination of dopamine, ascorbic acid, and uric acid ysing carbon ionic liquid electrode. Anal Biochem 359:224–229

    Article  CAS  Google Scholar 

  16. Wu J, Suls J, Sansen W (2000) Amperometric determination of ascorbic acid on screen-printing ruthenium dioxide electrode. Electrochem Commun 2:90–93

    Article  CAS  Google Scholar 

  17. Yang YJ, Li W (2014) CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens Bioeletron 56:300–306

    Article  CAS  Google Scholar 

  18. Li Y, Du J, Yang J, Liu D, Lu X (2012) Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid using single-walled carbon nanotubes modified electrode. Colloids Surf B Biointerfaces 97:32–36

    Article  CAS  Google Scholar 

  19. Ahmar H, Fakhari AR, Nabid MR, Tabatabaei Rezaei SJ, Bide Y (2012) Electrocatalytic oxidation of oxalic acid on palladium nanoparticles encapsulated on polyamidoamine dendrimer-grafted multi-walled carbon nanotubes hybrid material. Sens Actuators B 171–172:611–618

    Article  Google Scholar 

  20. Tashkhourian J, Hormozi Nezhad MR, Khodavesi J, Javadi S (2009) Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid. J Electroanal Chem 633:85–91

    Article  CAS  Google Scholar 

  21. Berdre MD, Basavaraja S, Deshpande R, Balaji DS, Venkataraman A (2010) Preparation and characterization of polypyrrole silver nanocomposites via interfacial polymerization. Int J Polymer Mater 59:531–543

    Article  Google Scholar 

  22. Ghanbari K (2014) Fabrication of silver nanoparticles–polypyrrole composite modified electrode for electrocatalytic oxidation of hydrazine. Synth Met 195:234–240

    Article  CAS  Google Scholar 

  23. Chen C, Chiu M, Sheu J, Wei K (2008) Photoresponses and memory effects in organic thin film transistors incorporating poly(3-hexylthiophene)/CdSe quantum dots. Appl Phys Lett 92:143105-1–143105-3

    Google Scholar 

  24. Chiu M, Chen C, Sheu J, Wei K (2009) An optical programming/electrical erasing memory device: organic thin film transistors incorporating core/shell CdSe@ZnSe quantum dots and poly(3-hexylthiophene). Org Electron 10:769–774

    Article  CAS  Google Scholar 

  25. Chen X, Parker SG, Zou G, Su W, Zhang Q (2010) β-cyclodextrin-functionalized silver nanoparticles for the naked eye detection of aromatic isomers. ACS Nano 4:6387–6394

    Article  CAS  Google Scholar 

  26. Liu CJ, Burghaus U, Besenbacher F, Wang ZL (2010) Preparation and characterization of nanomaterials for sustainable energy production. ACS Nano 4:5517–5526

    Article  CAS  Google Scholar 

  27. Zeng Q, Jiang X, Yu A, Lu G (2007) Growth mechanisms of silver nanoparticles: a molecular dynamics study. Nanotechnology 18:035708–035714

    Article  Google Scholar 

  28. Jin R, Cao YC, Hao E, Metraux GS, Schatz GC, MirKin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490

    Article  CAS  Google Scholar 

  29. Severin N, Kirstein S, Sokolov SM, Rabe JP (2009) Rapid trench channeling of graphenes with catalytic silver nanoparticles. Nano Lett 9:457–461

    Article  CAS  Google Scholar 

  30. Davarpanah J, Kiasat AR (2013) Catalytic application of silver nanoparticles immobilized to rice husk-SiO2-aminopropylsilane composite as recyclable catalyst in the aqueous reduction of nitroarenes. Catal Commun 41:6–11

    Article  CAS  Google Scholar 

  31. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N et al (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  CAS  Google Scholar 

  32. Ajitha B, Ashok Kumar Reddy Y, Sreedhara Reddy P (2015) Enhanced antimicrobial activity of silver nanoparticles with controlled particle size by pH variation. Powder Technol 269:110–117

    Article  CAS  Google Scholar 

  33. Zeng R, Rong MZ, Zhang MQ, Liang HC, Zeng HM (2002) Laser ablation of polymer-based silver nanocomposites. Appl Surf Sci 187:239–247

    Article  CAS  Google Scholar 

  34. Ustarroz J, Gupta U, Hubin A, Bals S, Terryn H (2010) Electrodeposition of Ag nanoparticles onto carbon coated TEM grids: a direct approach to study early stages of nucleation. Electrochem Commun 12:1706–1709

    Article  CAS  Google Scholar 

  35. Rezaei B, Khalili Boroujeni M, Ensafi AA (2014) A novel electrochemical nanocomposite imprinted sensor for the determination of lorazepam based on modified polypyrrole@sol–gel@gold nanoparticles/pencil graphite electrode. Electrochim Acta 123:332–339

    Article  CAS  Google Scholar 

  36. Allena NS, Murray KS, Fleming RJ, Saunders BR (1997) Physical properties of polypyrrole films containing trisoxalatometallate anions and prepared from aqueous solution. Synth Met 87:237–247

    Article  Google Scholar 

  37. Tambolia MS, Kulkarni MV, Patil RH, Gade WN, Navale SC, Kale BB (2012) Nanowires of silver–polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf B Biointerfaces 92:35–41

    Article  Google Scholar 

  38. Chen C, Wang L, Jiang G, Zhou J, Chen X, Yu H (2006) Study on the synthesis of silver nanowires with adjustable diameters through the polyol process. Nanotechnology 17:3933–3938

    Article  CAS  Google Scholar 

  39. Ye D, Luo L, Ding Y, Chen Q, Liu X (2011) A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode. Analyst 136:4563–4569

    Article  CAS  Google Scholar 

  40. Yang X, Li L, Shang S, Pan G, Yu X, Yan G (2010) Facial synthesis of polypyrrole/silver nanocomposites at the water/ionic liquid interface and their electrochemical properties. Mat Lett 64:1918–1920

    Article  CAS  Google Scholar 

  41. Babu K, Dhandapani P, Maruthamuthu S, Kulandainathan MA (2012) One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydr Polym 90:1557–1563

    Article  Google Scholar 

  42. Yang L, Liu D, Hung J, You T (2014) Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide midiied electrode. Sens Actuators B 193:166–172

    Article  CAS  Google Scholar 

  43. Hathoot AA, Yousef US, Shatla AS, Abdel-Azzem M (2012) Voltammetric simultaneous determination of glucose, ascorbic acid and dopamine on glassy carbon electrode modified by NiNPs@poly 1,5-diaminonaphthalene. Electrochim Acta 85:531–537

    Article  CAS  Google Scholar 

  44. Noroozifar M, Khorasani-Motlagh M, Taheri A (2010) Preparation of silver hexacyanoferratenanoparticles and its application for the simultaneous determination of ascorbic acid, dopamine and uric acid. Talanta 80:1657–1664

    Article  CAS  Google Scholar 

  45. Shankaran DR, Limura K, Kato T (2003) Simultaneous determination of ascorbic acid and dopamine at a sol–gel composite electrode. Sens Actuators B 94:73–80

    Article  Google Scholar 

  46. Hu G, Guo Y, Shao S (2009) Simultaneous determination of dopamine and ascorbic acid using the Nano-gold self-assembled glassy carbon electrode. Electroanalysis 21:1200–1206

    Article  CAS  Google Scholar 

  47. Zhang W, Chai Y, Yuan R, Han J, Chen S (2013) Deposited gold nanocrystals enhanced porous PTCA-Cys layer for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens Actuators B 183:157–162

    Article  CAS  Google Scholar 

  48. Hu W, Sun D, Ma W (2010) Silver doped poly(L-valine) modified glassy carbon electrode for the simultaneous determination of uric acid, ascorbic acid and dopamine. Electroanalysis 22:584–589

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge from the Research Council of Alzahra University and National Elites Fundation (Iran) for financial support to our research group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadijeh Ghanbari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, K., Hajheidari, N. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using silver nanoparticles deposited on polypyrrole nanofibers. J Polym Res 22, 152 (2015). https://doi.org/10.1007/s10965-015-0797-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0797-0

Keywords

Navigation