Skip to main content
Log in

Investigation of perfluorinated proton exchange membranes prepared via a facile strategy of chemically combining poly(vinylphosphonic acid) with PVDF by means of poly(glycidyl methacrylate) grafts

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A versatile and diverse grafting method was employed in the preparation of perfluorinated PEMs, in which poly(vinyl phosphonic acid) (PVPA) and poly(vinylidene fluoride) (PVDF) were chemically combined by means of poly(glycidyl methacrylate) (PGMA) grafts. Alkaline treated PVDF was used as a macromolecule in conjunction with GMA in the graft copolymerization. Various PVDF-g-PGMA-g-PVPA membranes were obtained upon simply mixing PVDF-g-PGMA and PVPA at several ratios by mass. The composition and the structure of the membranes were characterized by Energy Dispersive X-ray spectroscopy (EDS), 1H-NMR, 19F-NMR, and FTIR. Thermogravimetric analysis (TGA) demonstrated that the PVDF-g-PGMA and PVDF-g-PGMA-g-PVPA membranes were thermally stable up to 275 and 210 °C, respectively. The surface roughness and morphology of the membranes were studied using Atomic Force Microscopy (AFM), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The proton conductivity increased with increasing temperature and PVPA ratio in the absence of humidity. The maximum proton conductivity in anhydrous conditions at 150 °C was 0.0023 Scm−1 while in humidified conditions (under 50 % of RH) at 100 °C a value of 0.034 Scm−1 was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sen U, Usta H, Acar O, Citir M, Canlier A, Bozkurt A, Ata A (2015) Macromol Chem Phys 216:106–112

    Article  CAS  Google Scholar 

  2. Tang QW, Yuan S, Cai H (2013) J Mater Chem A 1:630–636

    Article  CAS  Google Scholar 

  3. Sinirlioglu D, Celik SU, Muftuoglu AE, Bozkurt A (2014) Macromol Chem Phys 215:269–279

    Article  CAS  Google Scholar 

  4. Tang QW, Cai H, Yuan S, Wang X, Yuan W (2013) Int J Hydrog Energy 38:1016–1026

    Article  CAS  Google Scholar 

  5. Sinirlioglu D, Celik SU, Muftuoglu AE, Bozkurt A (2015) Polym Eng Sci 55:260–269

    Article  CAS  Google Scholar 

  6. Celik SU, Bozkurt A, Hosseini SS (2012) Prog Polym Sci 37:1265–1291

    Article  CAS  Google Scholar 

  7. Parvole J, Jannasch P (2008) Macromolecules 41:3893–3903

    Article  CAS  Google Scholar 

  8. Celik SU, Akbey U, Bozkurt A, Graf R, Spiess HW (2008) Macrom Chem Phys 209:593–603

    Article  CAS  Google Scholar 

  9. Zhao Z, Pu H, Chang Z, Pan H (2014) Int J Hydrog Energy 39:6657–6663

    Article  CAS  Google Scholar 

  10. Singha S, Jana T (2014) Polymer 55:594–601

    Article  CAS  Google Scholar 

  11. Wang SH, Lin HL (2014) J Power Sources 257:254–263

    Article  CAS  Google Scholar 

  12. Sinirlioglu D, Celik SU, Muftuoglu AE, Bozkurt A (2014) J Appl Polym Sci 131:40107

    Google Scholar 

  13. Das S, Kumar P, Dutta K, Kundu PP (2014) Appl Energy 113:169–177

    Article  CAS  Google Scholar 

  14. Kim DS, Robertson GP, Kim YS, Guiver MD (2009) Macromolecules 42:957–963

    Article  CAS  Google Scholar 

  15. Lin H, Zhao C, Cui Z, Ma W, Fu T, Na H, Xing W (2009) J Power Sources 193:507–514

    Article  CAS  Google Scholar 

  16. Jouanneau J, Mercier R, Gonon L, Gebel G (2007) Macromolecules 40:983–990

    Article  CAS  Google Scholar 

  17. Arslantas A, Sinirlioglu D, Eren F, Muftuoglu AE, Bozkurt A (2014) J Polym Res 21:437

    Article  Google Scholar 

  18. Sinirlioglu D, Muftuoglu AE, Golcuk K, Bozkurt A (2014) J Polym Sci A Polym Chem 52:1885–1897

    Article  CAS  Google Scholar 

  19. Sasa D, Sinirlioglu D, Muftuoglu AE, Eren F, Celik SU, Bozkurt A (2013) J Polym Res 20:313

    Article  Google Scholar 

  20. Abdel-Hady EE, El-Toony MM, Abdel-Hamed MO (2013) Electrochim Acta 103:32–37

    Article  CAS  Google Scholar 

  21. Golcuk S, Muftuoglu AE, Celik SU, Bozkurt A (2013) J Polym Res 20:144

    Article  Google Scholar 

  22. Sezgin S, Sinirlioglu D, Muftuoglu AE, Bozkurt A (2014) J Chem 2014:963131

    Article  Google Scholar 

  23. Lepit A, Aini NA, Jaafar NK, Hashim N, Ali AMM, Dahlan KZM, Yahya MZA (2012) Int J Electrochem Sci 7:8560–8577

    CAS  Google Scholar 

  24. Li L, Yu Y, Deng B, Ji Y, Yu Y, Leidong X, Jingye L, Ming Y (2011) Nucl Sci Tech 22:160–165

    CAS  Google Scholar 

  25. Li L, Deng B, Ji Y, Yu Y, Xie L, Li J, Lu X (2010) J Memb Sci 346:113–120

    Article  CAS  Google Scholar 

  26. Shamsaei E, Saidi H, Nasef MM, Kuala L, Yahaya AH (2014) Radiochim Acta 102:351–362

    Article  CAS  Google Scholar 

  27. Meng JQ, Chen CL, Huang LP, Du QY, Zhang YF (2011) Appl Surf Sci 257:6282–6290

    Article  CAS  Google Scholar 

  28. Sui Y, Wang Z, Gao X, Gao C (2012) J Membr Sci 413:38–47

    Article  Google Scholar 

  29. Roh DK, Ahn SH, Seo JA, Shul YG, Kim JH (2010) J Polym Sci B Polym Phys 48:1110–1117

    Article  CAS  Google Scholar 

  30. Kim YW, Choi JK, Park JT, Kim JH (2008) J Membr Sci 313:315–322

    Article  CAS  Google Scholar 

  31. Kim YW, Park JT, Koh JH, Roh DK, Kim JH (2008) J Membr Sci 325:319–325

    Article  CAS  Google Scholar 

  32. Kim YW, Lee DK, Lee KJ, Kim JH (2008) Eur Polym J 44:932–939

    Article  CAS  Google Scholar 

  33. Tang Z, Li W, Liu L, Huang L, Zhou J, Yu H (2009) Chin J Chem 27:419–422

    Article  CAS  Google Scholar 

  34. Li S, Fried JR, Colebrook J (2013) Polym Eng Sci 53:597–608

    Article  CAS  Google Scholar 

  35. Ye S, Pu H, Wan D (2012) Polym Eng Sci 52:1450–1456

    Article  CAS  Google Scholar 

  36. Pu H, Wu J, Wan D, Chang Z (2008) J Membr Sci 322:392–399

    Article  CAS  Google Scholar 

  37. Modestov AD, Tarasevich MR, Filimonov VY, Leykin AY (2009) J Electrochem Soc 156:B650–B656

    Article  CAS  Google Scholar 

  38. Weber J, Kreuer KD, Maier J, Thomas A (2008) Adv Mater 20:2595–2598

    Article  CAS  Google Scholar 

  39. Yamada M, Honma I (2005) Polymer 46:2986–2992

    Article  CAS  Google Scholar 

  40. Kaltbeitzel A, Schauff S, Steininger H, Bingol B, Brunklaus G, Meyer WH, Spiess HW (2007) Solid State Ion 178:469–474

    Article  CAS  Google Scholar 

  41. Aslan A, Celik SU, Bozkurt A (2009) Solid State Ion 180:1240–1245

    Article  CAS  Google Scholar 

  42. Bingöl B, Meyer WH, Wagner M, Wegner G (2006) Macromol Rapid Commun 27:1719–1724

    Article  Google Scholar 

  43. Ross GJ, Watts JF, Hill MP, Morrissey P (2000) Polymer 41:1685–1696

    Article  CAS  Google Scholar 

  44. Bottino A, Capannelli G, Monticelli O, Piaggio P (2000) J Membr Sci 166:23–39

    Article  CAS  Google Scholar 

  45. Liu DM, Chen YW, Zhang N, He XH (2006) J Appl Polym Sci 101:3704–3712

    Article  CAS  Google Scholar 

  46. Nanjundan S, Unnithan CS, Selvamalar CSJ, Penlidis A (2005) React Funct Polym 62:11–24

    Article  Google Scholar 

  47. Tan S, Li J, Gao G, Li H, Zhang Z (2012) J Mater Chem 22:18496–18504

    Article  CAS  Google Scholar 

  48. Tan S, Hu X, Ding S, Zhang Z, Li H, Yang L (2013) J Mater Chem A 1:10353–10361

    Article  CAS  Google Scholar 

  49. Cheburkov Y, Moore GGI (2003) J Fluor Chem 123:227–231

    Article  CAS  Google Scholar 

  50. Yang ZY (2003) J Org Chem 68:5419–5421

    Article  CAS  Google Scholar 

  51. Lu YY, Claude J, Zhang QM, Wang Q (2006) Macromolecules 39:6962–6968

    Article  CAS  Google Scholar 

  52. Foris A (2004) Magn Reson Chem 42:534–555

    Article  CAS  Google Scholar 

  53. Göktepe F, Celik SU, Bozkurt A (2008) J Non-Cryst Solids 354:3637–3642

    Article  Google Scholar 

  54. Sevil F, Bozkurt A (2004) J Phys Chem Solids 65:1659–1662

    Article  CAS  Google Scholar 

  55. Celik SU, Bozkurt A (2008) Eur Polym J 44:213–218

    Article  CAS  Google Scholar 

  56. Tang W, Zhu T, Zhou P, Zhao W, Wang Q, Feng G, Yuan H (2011) J Mater Sci 46:6656–6663

    Article  CAS  Google Scholar 

  57. Huang YJ, Ye YS, Yen YC, Tsai LD, Hwang BJ, Chang FC (2011) Int J Hydrogen Energy 36:15333–15343

    Article  CAS  Google Scholar 

  58. Gasa JV, Weiss RA, Shaw MT (2007) J Membr Sci 304:173–180

    Article  CAS  Google Scholar 

  59. Sen U, Celik SU, Ata A, Bozkurt A (2008) Int J Hydrog Energy 33:2808–2815

    Article  CAS  Google Scholar 

  60. Boroglu MS, Celik SU, Bozkurt A, Boz I (2011) J Membr Sci 375:157–164

    Article  CAS  Google Scholar 

  61. Dong Z, Zhang Q, Yu C, Peng J, Ma J, Ju X, Zhai M (2013) Ionics 19:1587–1593

    Article  CAS  Google Scholar 

  62. Zhang PY, Yang H, Xu ZL, Wei YM, Guo JL, Chen DG (2013) J Polym Res 20:66

    Article  CAS  Google Scholar 

  63. Glaub B, Steinmann W, Walter S, Beckers M, Gunnar S, Gries T, Roth G (2013) Materials 6:2642–2661

    Article  Google Scholar 

  64. Yu S, Zheng W, Yu W, Zhang Y, Jiang Q, Zhao Z (2009) Macromolecules 42:8870–8874

    Article  CAS  Google Scholar 

  65. Huang XY, Jiang PK, Kim C, Liu F, Yin Y (2009) Eur Polym J 45:377–386

    Article  CAS  Google Scholar 

  66. Bach LG, Islam MR, Lee DC, Lim KT (2013) Appl Surf Sci 283:546–553

    Article  CAS  Google Scholar 

  67. He F, Luo B, Yuan S, Liang B, Choong C, Pehkoneni SO (2014) RSC Adv 4:105–117

    Article  CAS  Google Scholar 

  68. Cai T, Neoh KG, Kang ET (2011) Langmuir 27:2936–2945

    Article  CAS  Google Scholar 

  69. Young TH, Chang HH, Lin DJ, Cheng LP (2010) J Membr Sci 350:32–41

    Article  CAS  Google Scholar 

  70. Abu-Saied MA, Fontananova E, Drioli E, Mohy Eldin MS (2013) J Polym Res 20:187

    Article  Google Scholar 

  71. Sen U, Acar O, Celik SU, Bozkurt A, Ata A, Tokumasu T, Miyamoto A (2013) J Polym Res 20:217

    Article  Google Scholar 

  72. Nazir NA, Kim N, Iglesias WG, Jakli A, Kyu T (2012) Polymer 53:196–204

    Article  CAS  Google Scholar 

  73. Takimoto N, Wu L, Ohira A, Takeoka Y, Rikukawa M (2009) Polymer 50:534–540

    Article  CAS  Google Scholar 

  74. Casciola M, Alberti G, Sganappa M, Narducci R (2006) J Power Sources 162:141–145

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by Yildiz Technical University Scientific Research Projects Coordination Department with Project number 2014-07-01-KAP02. We would like to thank Fatih University-BINATAM center for the SEM-EDS, XRD and AFM measurements. We would also like to thank Mr. Ibrahim Sasmaz for measuring the NMR spectra at Fatih University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deniz Sinirlioglu or Ali Ekrem Muftuoglu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinirlioglu, D., Muftuoglu, A.E. & Bozkurt, A. Investigation of perfluorinated proton exchange membranes prepared via a facile strategy of chemically combining poly(vinylphosphonic acid) with PVDF by means of poly(glycidyl methacrylate) grafts. J Polym Res 22, 154 (2015). https://doi.org/10.1007/s10965-015-0796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0796-1

Keywords

Navigation