Skip to main content

Advertisement

Log in

Synthesis and properties of polystyrene-based polyHIPEs reinforced with quadruple hydrogen bond functionality

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polystyrene-based polyHIPEs were synthesized by RAFT polymerization and strengthened by introducing UPy groups (2-Ureido-4[1H] pyrimidinone) into polyHIPEs. Incorporation of UPy groups into polyHIPEs has created pores and controlled the porous morphology of resulting material. Meanwhile, the incorporation of quadruple hydrogen bond introduced some pins into polyHIPE. In comparison to the polyHIPE without reinforcement through quadruple hydrogen bond, the porosity of the reinforced sample was as high as 92 % and its Young’s modulus reached to 28.5 ± 3.9 MPa which was improved by 50 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen Y, Ballard N, Gayet F, Bon SA (2012) High internal phase emulsion gels (HIPE-gels) from polymer dispersions reinforced with quadruple hydrogen bond functionality. Chem Commun 48(8):1117–1119. doi:10.1039/c2cc16670d

    Article  CAS  Google Scholar 

  2. Cheng C, Gong S, Fu Q, Shen L, Liu Z, Qiao Y, Fu C (2010) Hexamethylenetetramine as both a ligand and a reducing agent in AGET atom transfer radical batch emulsion polymerization. Polym Bull 66(6):735–746. doi:10.1007/s00289-010-0305-y

    Article  Google Scholar 

  3. Xu WF, Bai R, Zhang FA (2014) Effects of internal-phase contents on porous polymers prepared by a high-internal-phase emulsion method. J Polym Res 21(9). doi:10.1007/S10965-014-0524-2

  4. Tsagalas L (2008) Production of porous electrodes for fuel cells supports. University of Notre Dame, Dissertation Abstracts International

  5. Kovacic S, Kren H, Krajnc P, Koller S, Slugovc C (2013) The use of an emulsion templated microcellular poly(dicyclopentadiene-co-norbornene) membrane as a separator in lithium-ion batteries. Macromol Rapid Commun 34(7):581–587. doi:10.1002/marc.201200754

    Article  CAS  Google Scholar 

  6. Yang Y, Wei Z, Wang C, Tong Z (2013) Lignin-based Pickering HIPEs for macroporous foams and their enhanced adsorption of copper(ii) ions. Chem Commun 49(64):7144–7146. doi:10.1039/c3cc42270d

    Article  CAS  Google Scholar 

  7. Tunc Y, Golgelioglu C, Tuncel A, Ulubayram K (2012) Polystyrene-based high internal phase emulsion polymer monolithic stationary phase for capillary electrochromatography. Sep Sci Technol 47(16):2444–2449. doi:10.1080/01496395.2012.672846

    CAS  Google Scholar 

  8. Wang YC, Tao SY, An YL (2013) A reverse membrane emulsification process based on a hierarchically porous monolith for high efficiency water-oil separation. J Mater Chem A 1(5):1701–1708. doi:10.1039/c2ta00007e

    Article  CAS  Google Scholar 

  9. Fernández-Trillo F, van Hest JCM, Thies JC, Michon T, Weberskirch R, Cameron NR (2009) Reversible immobilization onto PEG-based emulsion-templated porous polymers by co-assembly of stimuli responsive polymers. Adv Mater 21(1):55–59. doi:10.1002/adma.200801986

    Article  Google Scholar 

  10. Pierre SJ, Thies JC, Dureault A, Cameron NR, van Hest JCM, Carette N, Michon T, Weberskirch R (2006) Covalent enzyme immobilization onto photopolymerized highly porous monoliths. Adv Mater 18(14):1822–1826. doi:10.1002/adma.200600293

    Article  CAS  Google Scholar 

  11. Zhang H, Lv X, Li Y, Wang Y, Li J (2009) P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1):380–386. doi:10.1021/nn901221k

    Article  Google Scholar 

  12. Viswanathan P, Chirasatitsin S, Ngamkham K, Engler AJ, Battaglia G (2012) Cell instructive microporous scaffolds through interface engineering. J Am Chem Soc 134(49):20103–20109. doi:10.1021/ja308523f

    Article  CAS  Google Scholar 

  13. Zhang QC, Tan K, Ye ZY, Zhang Y, Tan WS, Lang MD (2012) Preparation of open porous polycaprolactone microspheres and their applications as effective cell carriers in hydrogel system. Mater Sci Eng C 32(8):2589–2595. doi:10.1016/j.msec.2012.07.045

    Article  CAS  Google Scholar 

  14. Caldwell S, Johnson DW, Didsbury MP, Murray BA, Wu JJ, Przyborski SA, Cameron NR (2012) Degradable emulsion-templated scaffolds for tissue engineering from thiol-ene photopolymerisation. Soft Matter 8(40):10344–10351. doi:10.1039/c2sm26250a

    Article  CAS  Google Scholar 

  15. Li ZF, Xiao MD, Wang JF, Ngai T (2013) Pure protein scaffolds from Pickering high internal phase emulsion template. Macromol Rapid Commun 34(2):169–174. doi:10.1002/marc.201200553

    Article  Google Scholar 

  16. Akay G, Birch MA, Bokhari MA (2004) Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Biomaterials 25(18):3991–4000. doi:10.1016/j.biomaterials.2003.10.086

    Article  CAS  Google Scholar 

  17. Busby W, Cameron NR, Jahoda ABC (2002) Tissue engineering matrixes by emulsion templating. Polym Int 51(10):871–881. doi:10.1002/pi.934

    Article  CAS  Google Scholar 

  18. Busby W, Cameron NR, Jahoda CAB (2001) Emulsion-derived foams (PolyHIPEs) containing poly(ε-caprolactone) as matrixes for tissue engineering. Biomacromolecules 2(1):154–164. doi:10.1021/bm0000889

    Article  CAS  Google Scholar 

  19. Mert EH, Yildirim H, Uzumcu AT, Kavas H (2013) Synthesis and characterization of magnetic polyHIPEs with humic acid surface modified magnetic iron oxide nanoparticles. React Funct Polym 73(1):175–181. doi:10.1016/j.reactfunctpolym.2012.09.005

    Article  CAS  Google Scholar 

  20. Arrua RD, Basbus JF, Strumia MC, Alvarez Igarzabal CI, Nazareno MA (2012) Synthesis of macroporous polymers with radical scavenging properties by immobilization of polyphenolic compounds. React Funct Polym 72(11):807–813. doi:10.1016/j.reactfunctpolym.2012.07.017

    Article  CAS  Google Scholar 

  21. Sergienko AY, Tai HW, Narkis M, Silverstein MS (2004) Polymerized high internal phase emulsions containing a porogen: specific surface area and sorption. J Appl Polym Sci 94(5):2233–2239. doi:10.1002/app.21170

    Article  CAS  Google Scholar 

  22. Wakeman RJ, Bhumgara ZG, Akay G (1998) Ion exchange modules formed from polyHIPE foam precursors. Chem Eng J 70(2):133–141. doi:10.1016/S0923-0467(98)00088-8

    Article  CAS  Google Scholar 

  23. He HK, Li WW, Zhong MJ, Konkolewicz D, Wu DC, Yaccato K, Rappold T, Sugar G, David NE, Matyjaszewski K (2013) Reversible CO2 capture with porous polymers using the humidity swing. Energy Environ Sci 6(2):488–493. doi:10.1039/c2ee24139k

    Article  CAS  Google Scholar 

  24. Schofield WCE, Bain CD, Badyal JPS (2012) Cyclodextrin-functionalized hierarchical porous architectures for high-throughput capture and release of organic pollutants from wastewater. Chem Mater 24(9):1645–1653. doi:10.1021/cm300552k

    Article  CAS  Google Scholar 

  25. Kovacic S, Krajnc P (2009) Macroporous monolithic poly(4-vinylbenzyl chloride) columns for organic synthesis facilitation by in situ polymerization of high internal phase emulsions. J Polym Sci, Polym Chem 47(23):6726–6734. doi:10.1002/pola.23732

    Article  CAS  Google Scholar 

  26. Mert EH, Kaya MA, Yildirim H (2012) Preparation and characterization of polyester-glycidyl methacrylate polyHIPE monoliths to use in heavy metal removal. Des Monomers Polym 15(2):113–126. doi:10.1163/156855511x615001

    Article  CAS  Google Scholar 

  27. Schwab MG, Senkovska I, Rose M, Klein N, Koch M, Pahnke J, Jonschker G, Schmitz B, Hirscher M, Kaskel S (2009) High surface area polyHIPEs with hierarchical pore system. Soft Matter 5(5):1055–1059. doi:10.1039/B815143a

    Article  CAS  Google Scholar 

  28. Szczurek A, Fierro V, Pizzi A, Celzard A (2013) Mayonnaise, whipped cream and meringue, a new carbon cuisine. Carbon 58:245–248. doi:10.1016/j.carbon.2013.02.056

    Article  CAS  Google Scholar 

  29. Haibach K, Menner A, Powell R, Bismarck A (2006) Tailoring mechanical properties of highly porous polymer foams: silica particle reinforced polymer foams via emulsion templating. Polymer 47(13):4513–4519. doi:10.1016/j.polymer.2006.03.114

    Article  CAS  Google Scholar 

  30. Menner A, Haibach K, Powell R, Bismarck A (2006) Tough reinforced open porous polymer foams via concentrated emulsion templating. Polymer 47(22):7628–7635. doi:10.1016/j.polymer.2006.09.022

    Article  CAS  Google Scholar 

  31. Menner A, Ikem V, Salgueiro M, Shaffer MSP, Bismarck A (2007) High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles. Chem Commun 41:4274–4276. doi:10.1039/b708935j

    Article  Google Scholar 

  32. Wu R, Menner A, Bismarck A (2010) Tough interconnected polymerized medium and high internal phase emulsions reinforced by silica particles. J Polym Sci A Polym Chem 48(9):1979–1989. doi:10.1002/pola.23965

    Article  CAS  Google Scholar 

  33. Ikem VO, Menner A, Bismarck A (2011) Tailoring the mechanical performance of highly permeable macroporous polymers synthesized via Pickering emulsion templating. Soft Matter 7(14):6571–6577. doi:10.1039/c1sm05272a

    Article  CAS  Google Scholar 

  34. Wong LLC, Villafranca PMB, Menner A, Bismarck A (2013) Hierarchical polymerized high Internal phase emulsions synthesized from surfactant-stabilized emulsion templates. Langmuir 29(20):5952–5961. doi:10.1021/la3047643

    Article  CAS  Google Scholar 

  35. Liu W, He G, He Z (2011) Polystyrene/magnetite hybrid foams prepared via 60 Co γ-ray radiation of high internal phase emulsions. J Polym Res 19(1):9765. doi:10.1007/s10965-011-9765-5

    Article  Google Scholar 

  36. Wong LLC, Ikem VO, Menner A, Bismarck A (2011) Macroporous polymers with hierarchical pore structure from emulsion templates stabilised by both particles and surfactants. Macromol Rapid Commun 32(19):1563–1568. doi:10.1002/marc.201100382

    Article  CAS  Google Scholar 

  37. Claire Hermant M, Klumperman B, Koning CE (2009) Conductive Pickering-poly(high internal phase emulsion) composite foams prepared with low loadings of single-walled carbon nanotubes. Chem Commun 19:2738–2740. doi:10.1039/b820638d

    Article  Google Scholar 

  38. Lepine O, Birot M, Deleuze H (2007) Elaboration of open-cell microcellular nanocomposites. J Polym Sci A Polym Chem 45(18):4193–4203. doi:10.1002/pola.22160

    Article  CAS  Google Scholar 

  39. Luo YW, Wang AN, Gao X (2012) Pushing the mechanical strength of PolyHIPEs up to the theoretical limit through living radical polymerization. Soft Matter 8(6):1824–1830. doi:10.1039/C1sm06756g

    Article  CAS  Google Scholar 

  40. Lamson M, Epshtein-Assor Y, Silverstein MS, Matyjaszewski K (2013) Synthesis of degradable polyHIPEs by AGET ATRP. Polymer 54(17):4480–4485. doi:10.1016/j.polymer.2013.06.048

    Article  CAS  Google Scholar 

  41. Mao D, Li T, Liu H, Li Z, Shao H, Li M (2013) Preparation of macroporous polyHIPE foams via radiation-induced polymerization at room temperature. Colloid Polym Sci 291(7):1649–1656. doi:10.1007/s00396-013-2899-8

    Article  CAS  Google Scholar 

  42. Chen Y, Ballard N, Bon SA (2013) Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions. Chem Commun 49(15):1524–1526. doi:10.1039/c2cc38200h

    Article  CAS  Google Scholar 

  43. Berda EB, Foster EJ, Meijer EW (2010) Toward controlling folding in synthetic polymers: fabricating and characterizing supramolecular single-chain nanoparticles. Macromolecules 43(3):1430–1437. doi:10.1021/ma902393h

    Article  CAS  Google Scholar 

  44. Ferguson CJ, Hughes RJ, Nguyen D, Pham BTT, Gilbert RG, Serelis AK, Such CH, Hawkett BS (2005) Ab initio emulsion polymerization by RAFT-controlled self-assembly. Macromolecules 38(6):2191–2204. doi:10.1021/ma048787r

    Article  CAS  Google Scholar 

  45. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31(16):5559–5562. doi:10.1021/Ma9804951

    Article  CAS  Google Scholar 

  46. Wang CX, Xu J, Gao Y, Yang DG, Li HM (2012) RAFT synthesis of acrylic polymers containing diol or dioxane groups. J Polym Res 19(6). doi:10.1007/S10965-012-9895-4

  47. Yu Y, Hong D, Liu Z, Jia F, Zhou Y, Leng C (2013) Controllable preparation and characterization of the thermosensitive block polymers. J Polym Res 20(9). doi:10.1007/s10965-013-0235-0

  48. Ji J, Jia L, Yan LF, Bangal PR (2010) Efficient synthesis of poly(acrylic acid) in aqueous solution via a RAFT process. J Macromol Sci Part A: Pure Appl Chem 47(5):445–451. doi:10.1080/10601321003659705

    Article  CAS  Google Scholar 

  49. Dusek K, Galina H, Mikes J (1980) Features of network formation in the chain crosslinking (Co)polymerization. Polym Bull 3(1-2):19–25. doi:10.1007/Bf00263201

    Article  CAS  Google Scholar 

  50. Barbetta A, Cameron NR (2004) Morphology and surface area of emulsion-derived (PolyHIPE) solid foams prepared with oil-phase soluble porogenic solvents: span 80 as surfactant. Macromolecules 37(9):3188–3201. doi:10.1021/ma0359436

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haojie Yu or Li Wang.

Additional information

Highlight

The addition of the monomer containing quadruple hydrogen bond group improved the stability of high internal phase emulsion.

In comparison to the polyHIPE without reinforcement through quadruple hydrogen bond, the porosity of the reinforced sample was as high as 92 % and its Young’s modulus reached to 28.5 ± 3.9 MPa which was improved by 50 %.

The hypothetical mechanism for the mechanical enhancement effect by quadruple hydrogen bond has been proposed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, G., Yu, H., Wang, L. et al. Synthesis and properties of polystyrene-based polyHIPEs reinforced with quadruple hydrogen bond functionality. J Polym Res 22, 147 (2015). https://doi.org/10.1007/s10965-015-0791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0791-6

Keywords

Navigation