Skip to main content
Log in

Dielectric relaxation and ferromagnetic resonance in magnetoelectric (Polyvinylidene-fluoride)/ferrite composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work the dielectric properties and ferromagnetic resonance of Polyvinylidene-fluoride embedded with 10 wt. % of NiFe2O4 or Ni0.5Zn0.5Fe2O4 nanoparticles are presented. The mechanisms of the dielectric relaxation in these two composites do not differ from each other. For more precise characterization of the dielectric relaxation, a two dimensional distribution of relaxation times was calculated from the temperature dependencies of the complex dielectric permittivity. The results obtained from the 2D distribution and the mean relaxation time are found to be consistent. The dynamics of the dielectric permittivity is described by the Arrhenius law. The energy and attempt time of the dielectric relaxators lie in a narrow energy and time region thus proving that the single type chains of polymer are responsible for a dispersion. The magnetic properties of the composites were investigated using the ferromagnetic resonance. A single resonance line was observed for both samples. From the temperature dependence (100 K - 310 K) of the resonance field and linewidth, the origin of the observed line was attributed to the NiFe2O4 and Ni0.5Zn0.5Fe2O4 superparamagnetic nanoparticles. By measuring films at different orientations with respect to the external magnetic field, the angular dependence of the resonance was observed, indicating the magnetic dipolar in-plane interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eerenstein W, Mathur ND, Scott JF (2006) Nature 442(7104):759. doi:10.1038/nature05023

    Article  CAS  Google Scholar 

  2. Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde SR, Ogale SB, Bai F, Viehland D, Jia Y, Schlom D G, Wuttig M, Roytburd A, Ramesh R (2004) Science 303(5658):661. doi:10.1126/science.1094207

    Article  CAS  Google Scholar 

  3. Tatarenko BMI, AS (2012) Adv Condensed Matter Phys 2012:661. doi:10.1155/2012/286562

    Article  Google Scholar 

  4. Martins P, Lanceros-Mndez S (2013) Adv Funct Mater 23(27):3371. doi:10.1002/adfm.201202780

    Article  CAS  Google Scholar 

  5. Martins P, Costa CM, Lanceros-Mendez S (2011) Appl Phys A 103(1):233. doi:10.1007/s00339-010-6003-7

    Article  CAS  Google Scholar 

  6. Silva M, Martins P, Lasheras A, Gutirrez J, Barandiarn J, Lanceros-Mendez S (2015) J Magn Magn Mater 377(0):29. doi:10.1016/j.jmmm.2014.10.040

    Article  CAS  Google Scholar 

  7. Martins P, Lasheras A, Gutierrez J, Barandiaran J, Orue I, Lanceros-Mendez S (2011) J Phys D: Appl Phys 44(49):495303

    Article  Google Scholar 

  8. Martins P, Lopes AC, Lanceros-Mendez S (2014) Progress Polym Sci 39(4):683. doi:10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  9. Sessler GM (1981) J Acoust Soc Amer 70(6):1596. doi:10.1121/1.387225

    Article  CAS  Google Scholar 

  10. Martins P, Costa CM, Botelho G, Lanceros-Mendez S, Barandiaran J M, Gutierrez J (2012) Mater Chem Phys 131(3):698. doi:10.1016/j.matchemphys.2011.10.037

    Article  CAS  Google Scholar 

  11. Banys J, Lapinskas S, Rudys S, Greicius S, Grigalaitis R (2011). Ferroelectrics 414(1):64. doi:10.1080/00150193.2011.577308

    Article  CAS  Google Scholar 

  12. Zorn R (2002) J Chem Phys 116(8):3204. doi:10.1063/1.1446035

    Article  CAS  Google Scholar 

  13. Mikonis A, Banys J, Grigalaitis R, Matulis A, Lapinskas S, Vlkel G (2013) Central Eur J Phys 11(2):206. doi:10.2478/s11534-012-0139-3

    CAS  Google Scholar 

  14. Holt AP, Griffin PJ, Bocharova V, Agapov AL, Imel AE, Dadmun MD, Sangoro JR, Sokolov A (2014) Macromolecules 47(5):1837. doi:10.1021/ma5000317

    Article  CAS  Google Scholar 

  15. Maity N, Mandal A, Nandi AK (2015) Polymer 65(0):154. doi:10.1016/j.polymer.2015.03.066

    Article  CAS  Google Scholar 

  16. Goncalves R, Martins P, Correia DM, Sencadas V, Vilas JL, Leon LM, Botelho G, Lanceros-Mendez S (2015) RSC Adv 5:35852. doi:10.1039/C5RA04409J

    Article  CAS  Google Scholar 

  17. Martins P, Costa C, Benelmekki M, Botelho G, Lanceros-Mndez S (2013) J Mater Sci 48(6):2681. doi:10.1007/s10853-012-7063-1

    Article  CAS  Google Scholar 

  18. Antonelli C, Serrano B, Baselga J, Ozisik R, Cabanelas JC (2015). Eur Polym J 62(0):31. doi:10.1016/j.eurpolymj.2014.10.018

    Article  CAS  Google Scholar 

  19. Schnhals A (2003) In: Kremer, F, Schnhals, A (eds) Broadband dielectric spectroscopy. Springer, Berlin Heidelberg, pp 225–293. doi:10.1007/978-3-642-56120-7_7

  20. Martins P, Costa CM, Benelmekki M, Lanceros-Mendez S Sensor Lett 11(1):110 (2013-01-01T00:00:00). doi:10.1166/sl.2013.2808

  21. Petzelt J, Rychetsky I, Nuzhnyy D (2012) Ferroelectrics 426(1):171. doi:10.1080/00150193.2012.671732

    Article  CAS  Google Scholar 

  22. Grimau M, Laredo E, Bello A, Suarez N (1997) J Polym Sci Part B: Polym Phys 35(15):2483. doi:10.1002/(SICI)1099-0488(19971115)35:15<2483::AID-POLB10>3.0.CO;2-1

    Article  CAS  Google Scholar 

  23. Banys J, Grigalaitis R, Mikonis A, Macutkevic J, Keburis P (2009) Physica Status Solidi (C) 6 (12):2725. doi:10.1002/pssc.200982529

    Article  CAS  Google Scholar 

  24. Nagata K, Ishihara A (1992) J Magn Magn Materials 104–107, Part 3 (0):1571. doi:10.1016/0304-8853(92)91459-7

    Article  Google Scholar 

  25. Zysler R, Fiorani D, Dormann J, Testa A (1994) J Magn Magn Mater 133(1–3):71. doi:10.1016/0304-8853(94)90492-8

    Article  CAS  Google Scholar 

  26. Ibrahim MM, Edwards G, Seehra MS, Ganguly B, Huffman GP (1994) vol 75

  27. Dutta P, Manivannan A, Seehra M S, Shah N, Huffman GP (2004) Phys. Rev. B 70:174428. doi:10.1103/PhysRevB.70.174428

    Article  Google Scholar 

  28. Guskos N, Typek J, Maryniak M (2007) Physica Status Solidi (B) 244(3):859. doi:10.1002/pssb.200572705

    Article  CAS  Google Scholar 

  29. Kinnari P, Upadhyay R, Mehta R (2002) J Magn Magn Mater 252 (0):35. doi:10.1016/S0304-8853(02)00652-2. Proceedings of the 9th international conference on magnetic fluids

    Article  CAS  Google Scholar 

  30. Moro F, de Miguel R, Jenkins M, Gmez-Moreno C, Sells D, Tuna F, McInnes E, Lostao A, Luis F, van Slageren J (2014) J Magn Magn Mater 361(0):188 . doi:10.1016/j.jmmm.2014.02.053

    Article  CAS  Google Scholar 

  31. Morais PC, Lara MC, Neto K S (1987) Philos Mag Lett 55(4):181. doi:10.1080/09500838708207553

    Article  Google Scholar 

  32. Berger R, Bissey JC, Kliava J, Daubric H, Estourns C (2001) J Magn Magn Mater 234(3):535. doi:10.1016/S0304-8853(01)00347-X

    Article  CAS  Google Scholar 

  33. Shahane G, Kumar A, Arora M, Pant R, Lal K (2010) J Magn Magn Mater 322(8):1015. doi:10.1016/j.jmmm.2009.12.006

    Article  CAS  Google Scholar 

  34. Wu K, Li H, Yang C, Chen H (2004) Appl Surf Sci 228(1–4):285. doi:10.1016/j.apsusc.2004.01.025

    Article  CAS  Google Scholar 

  35. Lachowicz HK, Sienkiewicz A, Gierlowski P, Slawska Waniewska A (2000) J Appl Phys 88(1)

  36. Kuzminski M, Lachowicz H, Lezama L, Barandiarn J, Didukh P, Slawska Waniewska A (2001) J Magn Magn Mater 234(1):31. doi:10.1016/S0304-8853(01)00255-4

    Article  CAS  Google Scholar 

  37. Tomita S, Akamatsu K, Shinkai H, Ikeda S, Nawafune H, Mitsumata C, Kashiwagi T, Hagiwara M (2005) Phys. Rev. B 71:180414. doi:10.1103/PhysRevB.71.180414

    Article  Google Scholar 

  38. Mitsumata C, Tomita S, Hagiwara M, Akamatsu K (2010) J Phys Condensed Matter 22(1):016005

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Lithuanian Research Council under the project MIP- 068/2012 and by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST-C/FIS/UI607/2011, project PTDC/CTM-NAN/121038/2010 and the project MateproOptimizing Materials and Processes, ref. NORTE- 07−0124-FEDER-000037, co-funded by the Programa Operacional Regional do Norte (ON.2 O Novo Norte), under the Quadro de Referncia Estratgico Nacional (QREN), through the Fundo Europeu de Desenvolvimento Regional (FEDER). P. Martins thanks the FCT for the grant FCT-DFRH-SFRH/BPD/96227/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarunas Svirskas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svirskas, S., Simenas, M., Banys, J. et al. Dielectric relaxation and ferromagnetic resonance in magnetoelectric (Polyvinylidene-fluoride)/ferrite composites. J Polym Res 22, 141 (2015). https://doi.org/10.1007/s10965-015-0780-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0780-9

Keywords

Navigation