Skip to main content
Log in

Charge carrier relaxation studies in poly (3, 4-ethylenedioxythiophene) nanofibers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The electrical conductivity and carrier relaxation in poly (3, 4-ethylenedioxythiophene) (PEDOT) nanofibers have been studied over a wide range of frequency and temperature by means of impedance spectroscopy. High resolution transmission electron micrographs confirm the formation of nanofibers with average diameter of 14 nm. The linear increase of imaginary permittivity with decreasing frequency in the log-log plot of ε″ versus ω is attributed to the higher contribution of dc conductivity than that of the electrode polarization. The presence of single semicircle in the complex impedance Cole-Cole plot indicates the presence of single charge carrier relaxation mechanism. The perfect matching of the relaxation peak in Z″ and M″ vs. frequency at different temperature confirms the presence of Debye type relaxation. From the temperature dependent behavior of frequency exponent study it is confirmed that the charge transport takes place through correlated barrier hopping mechanism. Decrease of barrier height and increase of density of states with increasing dopant concentration can be corroborated with the conductivity enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pomerantz Z, Belmonte GG, Joseph A, Lellouche JP, Bisquert J, Zaban A (2007) Electrochim Acta 52:6841–6847

    Article  CAS  Google Scholar 

  2. Ates M (2011) Prog Org Coatings 71:1–10

    Article  CAS  Google Scholar 

  3. Nath C, Kumar A (2013) Phys B 426:94–102

    Article  CAS  Google Scholar 

  4. Xiao Y, Cui X, Martin DC (2004) J Electro Chem 573:43–48

    CAS  Google Scholar 

  5. Liu YD, Kim JE, Choi HJ (2011) Macromol Rapid Commun 32:881–886

    Article  CAS  Google Scholar 

  6. Granstrom M, Berggren M, Inganas O (1995) Science 267:1479–1481

    Article  CAS  Google Scholar 

  7. Gustafsson JC, Liedberg B, Inganas O (1994) Solid State Ionics 69:145–152

    Article  CAS  Google Scholar 

  8. Richert R, Wagner H (1998) Solid State Ionics 105:167–173

    Article  CAS  Google Scholar 

  9. Kulkarni S, Nagabhushana BM, Parvatikar N, Koppalkar A, Shivakumara C, Damle R (2014) Mater Res Bull 50:197–202

    Article  CAS  Google Scholar 

  10. Intatha U, Eitssayeam S, Wang J, Tunkasiri T (2010) Curr Appl Phys 10:21–25

    Article  Google Scholar 

  11. Biswas S, Dutta B, Bhattacharya S (2014) J Mater Sci 49:5910–5921

    Article  CAS  Google Scholar 

  12. Han MG, Foulger SH (2006) Small 10:1164–1169

    Article  Google Scholar 

  13. Aasmundh KE, Samuelsent EJ, Pettersson LAA, Inganas O, Johansson T, Feidenhans R (1999) Synth Met 101:561–564

    Article  Google Scholar 

  14. Gupta B, Mehta M, Melvin A, Kamalakannan R, Dash S, Kamruddin M, Tyagi AK (2014) Mater Chem Phys 147:867–877

    Article  CAS  Google Scholar 

  15. Shin HJ, Jeon SS, Im SS (2011) Synth Met 161:1284–1288

    Article  CAS  Google Scholar 

  16. Xiong S, Zhang L, Lu X (2013) Polym Bull 70:237–247

    Article  CAS  Google Scholar 

  17. Tamburri E, Sarti S, Orlanducci S, Terranova ML, Rossi M (2011) Mater Chem Phys 125:397–404

    Article  CAS  Google Scholar 

  18. Van FT, Garreau S, Louarn G, Froyer G, Chevrot C (2001) J Mater Chem 11:1378–1382

    Article  Google Scholar 

  19. Helms JH, Majumdar A (1993) J Electrochem Soc 140:1048–1055

    Article  CAS  Google Scholar 

  20. Govindaraj G, Baskaran N, Shahi K, Monoravi P (1995) Solid State Ionics 76:47–55

    Article  CAS  Google Scholar 

  21. Zhao C, Zhao CZ, Werner M, Taylor S, Chalker P (2013) Nano Res Lett 8:456–467

    Article  Google Scholar 

  22. Mashimo S, Nozaki R, Yagihara S, Takeishi S (1982) J Chem Phys 77:6259–6262

    Article  CAS  Google Scholar 

  23. Smyth CP (1955) Dielectric behavior and structure. McGraw-Hill Book Company Inc, New York

    Google Scholar 

  24. Ku CC, Liepins D (1987) Electrical properties of polymers. Hanser Publishers, Munich

    Google Scholar 

  25. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric, London

    Google Scholar 

  26. Rehbach MS, Sluyters JH (1964) Rec Trav Chim Pays Bas 83:217–222

    Article  Google Scholar 

  27. Mahato DK, Dutta A, Sinha TP (2011) Phys B 406:2703–2708

    Article  CAS  Google Scholar 

  28. Roy AS, Hegde SG, Parveen A (2014) Polym Adv Technol 25:130–135

    Article  CAS  Google Scholar 

  29. Afzal AB, Akhtar MJ, Nadeem M, Hassan MM (2009) J Phys Chem C 113:17560–17565

    Article  CAS  Google Scholar 

  30. Molak A, Paluch M, Pawlus S, Klimontko J, Ujma Z, Gruszka I (2005) J Phys D Appl Phys 38:1450–1460

    Article  CAS  Google Scholar 

  31. Almond D, West A, Grant R (1982) Solid State Commun 55:1277–1280

    Article  Google Scholar 

  32. Chakraborty G, Meikap AK, Babu R, Blau WJ (2011) Solid State Commun 151:754–758

    Article  CAS  Google Scholar 

  33. Lu H, Zhang X, Zhang H (2006) J Appl Phys 100:054104–054111

    Article  Google Scholar 

  34. Mohanty S, Choudharyn RNP, Padhee R, Parida BN (2014) Ceram Int 40:9017–9025

    Article  CAS  Google Scholar 

  35. Davis M (1979) Electronic processes in non-crystalline solids. Clarendon, Oxford

    Google Scholar 

  36. Jonscher AK (1977) Nature 267:673–679

    Article  CAS  Google Scholar 

  37. Dar MA, Batoo KM, Verma V, Siddiqui WA, Kotnala RK (2010) J Alloys Compd 493:553–560

    Article  CAS  Google Scholar 

  38. Dey A, De S, De A, De SK (2004) Nanotech 15:1277–1283

    Article  CAS  Google Scholar 

  39. Gmati F, Fattoum A, Bohli N, Mohamed AB (2008) J Phys Condens Matter 20:125221–125230

    Article  Google Scholar 

  40. Farid AM, Bekheet AE (2000) Vacuum 59:932–939

    Article  CAS  Google Scholar 

  41. Austin IG, Mott NF (1969) Adv Phys 18:41–102

    Article  CAS  Google Scholar 

  42. Ruit KVD, Cohen RI, Bollen D, Mol TV, Rozen RY, Janssen RAJ, Kemerink M (2013) Adv Funct Mater 23:5778–5786

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support provided by UGC-DAE-CSR Indore Centre, India through project grant No. CSR-I/CRS-50/50. Authors sincerely thank Dr. K. Asokan Scientist IUAC for providing the facilities to carry out the dielectric measurements and for his scientific discussion during the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chutia, P., Kumar, A. Charge carrier relaxation studies in poly (3, 4-ethylenedioxythiophene) nanofibers. J Polym Res 22, 122 (2015). https://doi.org/10.1007/s10965-015-0768-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0768-5

Keywords

Navigation