Skip to main content
Log in

Microstructure studies of isotactic polypropylene under natural weathering by positron annihilation lifetime spectroscopy

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The microstructure evolution of isotactic polypropylene (PP) exposed to subtropical humid climate of Guangzhou of China, were investigated by gel permeation chromatography, Fourier transform infrared spectroscopy, differential scanning calorimeter, dynamic mechanical analysis and positron annihilation lifetime spectroscopy. Positron data showed that the free volume of PP matrix decreased with involving a shrinking of the free volume hole sizes as the extent of weathering degradation of PP aggravated. The shrinkage of free volume hole sizes may be traced to the loss of mobility of molecules of PP matrix. The increase of the glass transition temperature substantiated undoubtedly the decrease of molecular mobility of PP chains. The increase in crystallinity might increase the amount of rigid amorphous fraction of PP matrix, which induced the loss of molecular mobility. Furthermore, the decrease of ortho-positronium formation ought to be correlated to the increase in crystallinity and the increasing amount of scavenchers which were in this work represented by the carbonyl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vaillant D, Lacoste J, Dauphin G (1994) The oxidation mechanism of polypropylene: contribution of 13C-NMR spectroscopy. Polym Degrad Stab 45(3):355–360

    Article  CAS  Google Scholar 

  2. Girois S, Audouin L, Verdu J, Delprat P, Marot G (1996) Molecular weight changes during the photooxidation of isotactic polypropylene. Polym Degrad Stab 51(2):125–132

    Article  CAS  Google Scholar 

  3. Turton T, White J (2001) Observation of different photo-degradation behaviour in two similar polypropylenes. J Mater Sci 36(19):4617–4624

    Article  CAS  Google Scholar 

  4. Bedia EL, Paglicawan MA, Bernas CV, Bernardo ST, Tosaka M, Kohjiya S (2003) Natural weathering of polypropylene in a tropical zone. J Appl Polym Sci 87(6):931–938

    Article  CAS  Google Scholar 

  5. Gallo R, Brambilla L, Castiglioni C, Severini F (2006) Characterization of naturally weathered polypropylene plates. J Macromol Sci Pure Appl Chem 43(3):535–554

    Article  CAS  Google Scholar 

  6. Rajakumar K, Sarasvathy V, Chelvan AT, Chitra R, Vijayakumar CT (2009) Natural weathering studies of polypropylene. J Polym Environ 17(3):191–202

    Article  CAS  Google Scholar 

  7. Rimdusit S, Wongsongyot S, Jittarom S, Suwanmala P, Tiptipakorn S (2011) Effects of gamma irradiation with and without compatibilizer on the mechanical properties of polypropylene/wood flour composites. J Polym Res 18(4):801–809

    Article  CAS  Google Scholar 

  8. Song D, Gao J, Li X, Lu L (2014) Evaluation of aging behavior of polypropylene in natural environment by principal component analysis. Polym Test 33:131–137

    Article  CAS  Google Scholar 

  9. Tidjani A, Arnaud R (1993) Photo-oxidation of linear low density polyethylene: a comparison of photoproducts formation under natural and accelerated exposure. Polym Degrad Stab 39(3):285–292

    Article  CAS  Google Scholar 

  10. Tidjani A (1997) Photooxidation of polypropylene under natural and accelerated weathering conditions. J Appl Polym Sci 64(13):2497–2503

    Article  CAS  Google Scholar 

  11. Colom X, Canavate J, Sunol J, Saurina J, Carrasco F (2003) Natural and artificial aging of polypropylene–polyethylene copolymers. J Appl Polym Sci 87(10):1685–1692

    Article  CAS  Google Scholar 

  12. Pickett JE, Coyle DJ (2013) Hydrolysis kinetics of condensation polymers under humidity aging conditions. Polym Degrad Stab 98(7):1311–1320

    Article  CAS  Google Scholar 

  13. Valadez-Gonzalez A, Veleva L (2004) Mineral filler influence on the photo-oxidation mechanism degradation of high density polyethylene. Part II: natural exposure test. Polym Degrad Stab 83(1):139–148

    Article  CAS  Google Scholar 

  14. Tao S (1972) Positronium annihilation in molecular substances. J Chem Phys 56(11):5499–5510

    Article  CAS  Google Scholar 

  15. Lind JH, Jones PL, Pearsall GW (1986) A positron annihilation lifetime study of isotactic polypropylene. J Polym Sci A Polym Chem 24(11):3033–3047

    Article  CAS  Google Scholar 

  16. Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Inst Methods Phys Res Sect A 374(2):235–244

    Article  CAS  Google Scholar 

  17. Mohamed HFM, Abdel-Hady EE, Mohamed SS (2007) Irradiated polymethylmethacrylate studied by positron annihilation spectroscopy. Phys Status Solidi C 4(10):3722–3726

    Article  CAS  Google Scholar 

  18. Zaydouri A, Grivet M (2009) The effect of electron irradiation on high-density polyethylene: positron annihilation lifetime spectroscopy, differential scanning calorimetry and X-ray scattering studies. Radiat Phys Chem 78(9):770–775

    Article  CAS  Google Scholar 

  19. Ochędzan-Siodłak W, Dziubek K, Czaja K, Rabiej S, Szatanik R (2014) High crystallinity polyethylene obtained in biphasic polymerization using pyridinium chloroaluminate ionic liquid. J Polym Res 21(9):1–10

    Google Scholar 

  20. Brambilla L, Consolati G, Gallo R, Quasso F, Severini F (2003) Environmental degradation of isotactic polypropylene plates as studied by positron annihilation lifetime spectroscopy. Polymer 44(4):1041–1044

    Article  CAS  Google Scholar 

  21. Gallo R, Brambilla L, Castiglioni C, Ipsale S, Severini F, Quasso F, Consolati G (2005) Environmental degradation of a novel ethylene–propylene copolymer in thick sheets. Eur Polym J 41(2):359–366

    Article  CAS  Google Scholar 

  22. Arroyo M, Lopez-Manchado M, Avalos F (1997) Crystallization kinetics of polypropylene: II. Effect of the addition of short glass fibres. Polymer 38(22):5587–5593

    Article  CAS  Google Scholar 

  23. Dlubek G, Pionteck J, Yu Y, Thränert S, Elsayed M, Badawi E, Krause-Rehberg R (2008) The free volume and its recovery in pressure-densified and CO2-swollen heterocyclic-ring-containing fluoropolymers. Macromol Chem Phys 209(18):1920–1930

    Article  CAS  Google Scholar 

  24. Cangialosi D, Schut H, Wubbenhorst M, van Turnhout J, van Veen A (2003) Accumulation of charges in polycarbonate due to positron irradiation. Radiat Phys Chem 68(3–4):507–510

    Article  CAS  Google Scholar 

  25. Rajakumar K, Sarasvathy V, Thamaraichelvan A, Chitra R, Vijayakumar CT (2010) Effect of iron carboxylates on the photodegradability of polypropylene. I. Natural weathering studies. J Appl Polym Sci 118(5):2601–2612

    Article  CAS  Google Scholar 

  26. Blais P, Carlsson D, Wiles D (1972) Surface changes during polypropylene photo-oxidation: a study by infrared spectroscopy and electron microscopy. J Polym Sci A Polym Chem 10(4):1077–1092

    Article  CAS  Google Scholar 

  27. Knight J, Calvert P, Billingham N (1985) Localization of oxidation in polypropylene. Polymer 26(11):1713–1718

    Article  CAS  Google Scholar 

  28. Zerbi G, Piseri L (1968) Dispersion curves and frequency distributions of isotactic polypropylene. J Chem Phys 49(9):3840–3844

    Article  CAS  Google Scholar 

  29. Horrocks A, Mwila J, Miraftab M, Liu M, Chohan S (1999) The influence of carbon black on properties of orientated polypropylene 2. Thermal and photodegradation. Polym Degrad Stab 65(1):25–36

    Article  CAS  Google Scholar 

  30. Rajakumar K, Sarasvathy V, Chelvan AT, Chitra R, Vijayakumar CT (2012) Effect of iron carboxylates on the photodegradability of polypropylene. II. Artificial weathering studies. J Appl Polym Sci 123(5):2968–2976

    Article  CAS  Google Scholar 

  31. Ojeda T, Freitas A, Birck K, Dalmolin E, Jacques R, Bento F, Camargo F (2011) Degradability of linear polyolefins under natural weathering. Polym Degrad Stab 96(4):703–707

    Article  CAS  Google Scholar 

  32. Rabello M, White J (1997) Crystallization and melting behaviour of photodegraded polypropylene-I. Chemi-crystallization. Polymer 38(26):6379–6387

    Article  CAS  Google Scholar 

  33. Rabello M, White J (1997) Crystallization and melting behaviour of photodegraded polypropylene-II. Re-crystallization of degraded molecules. Polymer 38(26):6389–6399

    Article  CAS  Google Scholar 

  34. Craig I, White J, Kin PC (2005) Crystallization and chemi-crystallization of recycled photo-degraded polypropylene. Polymer 46(2):505–512

    Article  CAS  Google Scholar 

  35. White J, Shyichuk A (2007) Macromolecular scission and crosslinking rate changes during polyolefin photo-oxidation. Polym Degrad Stab 92(7):1161–1168

    Article  CAS  Google Scholar 

  36. White JR (2009) A Critical assessment of techniques for monitoring polymer photodegradation. In: Service life prediction of polymeric materials. Springer, US

  37. Balta Calleja F, Serna J, Vicente J, Segovia M (1985) Structural implications on positron lifetimes in lamellar polyethylene with chain defects. J Appl Phys 58(1):253–259

    Article  CAS  Google Scholar 

  38. Goldanskii AV, Onishuk VA, Shantarovich VP (1987) Some principles of the studies of positron annihilation in polymer systems. Phys Status Solidi A 102(2):559–564

    Article  CAS  Google Scholar 

  39. Suzuki T, Oki Y, Numajiri M, Miura T, Kondo K, Ito Y (1992) Positron annihilation in irradiated and unirradiated polyethylenes. J Polym Sci B Polym Phys 30(6):517–525

    Article  CAS  Google Scholar 

  40. Nakanishi H, Jean Y, Smith E, Sandreczki T (1989) Positronium formation at free-volume sites in the amorphous regions of semicrystalline PEEK. J Polym Sci B Polym Phys 27(7):1419–1424

    Article  CAS  Google Scholar 

  41. Cangialosi D, Schut H, Van Veen A, Picken S (2003) Positron annihilation lifetime spectroscopy for measuring free volume during physical aging of polycarbonate. Macromolecules 36(1):142–147

    Article  CAS  Google Scholar 

  42. Sathyanarayana P, Shariff G, Thimmegowda M, Ashalatha M, Ramani R, Ranganathaiah C (2002) A positron lifetime study of structural relaxation in UV irradiated poly (ethylene terephthalate). Polym Degrad Stab 78(3):449–458

    Article  CAS  Google Scholar 

  43. Zipper M, Simon G, Cherry P, Hill A (1994) The effect of crystallinity on chain mobility and free volume in the amorphous regions of a miscible polycarbonate/polyester blend. J Polym Sci B Polym Phys 32(7):1237–1247

    Article  CAS  Google Scholar 

  44. Wunderlich B (2003) Reversible crystallization and the rigid–amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28(3):383–450

    Article  CAS  Google Scholar 

  45. Zia Q, Mileva D, Androsch R (2008) Rigid amorphous fraction in isotactic polypropylene. Macromolecules 41(21):8095–8102

    Article  CAS  Google Scholar 

  46. Davis WJ, Pethrick RA (1998) Positron annihilation studies of physical ageing in polycarbonate. Eur Polym J 34(12):1747–1754

    Article  CAS  Google Scholar 

  47. Li X, Gidley DW, Hristov HA, Yee AF (1994) Positronium formation in semicrystalline poly (ethylene terephthalate). Polymer 35(1):14–17

    Article  Google Scholar 

  48. Olson BG, Lin J, Nazarenko S, Jamieson AM (2003) Positron annihilation lifetime spectroscopy of poly (ethylene terephthalate): contributions from rigid and mobile amorphous fractions. Macromolecules 36(20):7618–7623

    Article  CAS  Google Scholar 

  49. Misheva M, Mihaylova M, Djourelov N, Kresteva M, Krestev V, Nedkov E (2000) Positron annihilation lifetime spectroscopy studies of irradiated poly (propylene-co-ethylene)/poly (ethylene-co-vinyl acetate) blends. Radiat Phys Chem 58(1):39–47

    Article  CAS  Google Scholar 

  50. Zhang J, Yang M, Maurer FH (2011) Effect of TiO2 formation on the free volume properties of electrospun PMMA nanohybrids. Macromolecules 44(14):5711–5721

    Article  CAS  Google Scholar 

  51. Yu R, Suzuki T, Djourelov N, Ito Y, Kondo K (2006) Study of irradiation effect on positronium formation in polypropylene. Radiat Phys Chem 75(2):247–252

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China (No. 51133005 and 51421061), and the Research Fund for the Doctoral Program of Higher Education (20120181130013 and 20110181110029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Liao or Guangxian Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, K., Zhu, J., Liao, X. et al. Microstructure studies of isotactic polypropylene under natural weathering by positron annihilation lifetime spectroscopy. J Polym Res 22, 109 (2015). https://doi.org/10.1007/s10965-015-0753-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0753-z

Keywords

Navigation