Skip to main content
Log in

Chemical oxidative polymerization, optical, electrochemical and kinetic studies of 8-amino-2-naphthol

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Here the polymerization of 8-amino-2-naphthol (AN) is reported without use of an additional external template, surfactants or functional dopants. For this, NaOCl and hydrochloride acid solution (1.0 M) were used as oxidant and reaction medium, respectively. The structure of oligomer was elucidated by FT-IR, UV–vis and 1H-NMR techniques. The number average molecular weight of oligomer was found to be 2200 Da with a polydispersity index of 1.4 by size exclusion chromatography. This oligomer exhibited a multicolor emission behavior as it was excited at different wavelenghts. Redox states were clarified by cyclic voltammetry (CV) technique and the relationship between anodic/cathodic peak currents vs. scan rates was determined. Thermal analysis and XRD data assigned that the resulting oligomer was in a semi-crystalline form. The activation energy related to the solid state decomposition was calculated from differential and integral non-isothermal methods and the lowest value using Kissinger procedures was determined to be 79.53 kJ/mol in N2 atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Economopoulos SP, Andreopoulou AK, Gregoriou VG, Kallitsis JK (2005) Chem Mater 17:1063–1071

    Article  CAS  Google Scholar 

  2. Huang WY, Yun H, Lin HS, Kwei TK, Okamoto Y (1999) Macromolecules 32:8089–8093

    Article  CAS  Google Scholar 

  3. Kimyonok A, Wang XY, Weck M (2006) J Macromol Sci C Polym Rev J 46:47–77

    Article  CAS  Google Scholar 

  4. Anselmo AS, Lindgren LJ, Rysz J, Bernasik A, Budkowski A, Andersson MR, Svensson K, van Stam J, Moons E (2011) Chem Mater 23:2295–2302

    Article  CAS  Google Scholar 

  5. Hellstrom S, Lindgren LJ, Zhou Y, Zhang FL, Inganas O, Andersson MR (2010) Polym Chem 1:1272–1280

    Article  Google Scholar 

  6. Bai H, Shi G (2007) Sensors 7:267–274

    Article  CAS  Google Scholar 

  7. Wilson R, Turner APF (1992) Biosens Bioelectron 7:165–185

    Article  CAS  Google Scholar 

  8. Ram MK, Sundaresan NS, Malhotra BD (1994) J Mater Sci Lett 13:1490–1493

    Article  CAS  Google Scholar 

  9. Meyer WH, Kiess H, Binggeli B, Meier E, Harbeke G (1985) Synth Met 10:255–259

    Article  CAS  Google Scholar 

  10. Trivedi DC, Dhawan SK (1993) Synth Met 59:267–272

    Article  CAS  Google Scholar 

  11. Nalwa HS (ed) (1997) Handbook of organic conductive materials and polymers. Wiley, New York

    Google Scholar 

  12. Rizzo A, Solin N, Lindgren LJ, Andersson MR, Inganas O (2010) Nano Lett 10:2225–2230

    Article  CAS  Google Scholar 

  13. Zhao C, Wang H, Jiang Z (2003) Appl Surf Sci 207:6–12

    Article  CAS  Google Scholar 

  14. Cutler CA, Burrell AK, Collis GE, Dastoor PC, Officer DL, Too CO, Wallace GG (2001) Synth Met 123:225–237

    Article  CAS  Google Scholar 

  15. Li S, Li Z, Fang X, Chen GQ, Huang Y, Xu K (2008) J Appl Polym Sci 110:2085–2093

    Article  CAS  Google Scholar 

  16. Moon DK, Kohtaro O, Tsukasa M, Takakazu Y (1993) Macromolecules 26:6992–6997

    Article  CAS  Google Scholar 

  17. Li X, Sun C, Wei Z (2005) Synth Met 155:45–50

    Article  CAS  Google Scholar 

  18. Arévalo AH, Fernández H, Silber JJ, Sereno L (1990) Electrochim Acta 35:741–748

    Article  Google Scholar 

  19. Kobayashi S, Makino A (2009) Chem Rev 109:5288–5353

    Article  CAS  Google Scholar 

  20. Liu W, Bian S, Li L, Samuelson L, Kumar J, Tripathy S (2000) Chem Mater 12:1577–1584

    Article  CAS  Google Scholar 

  21. Bilici A, Kaya İ, Yıldırım M (2010) Biomacromolecules 11:2593–2601

    Article  CAS  Google Scholar 

  22. Bilici A, Doğan F, Yıldırım M, Kaya İ (2011) React Funct Polym 71:675–683

    Article  CAS  Google Scholar 

  23. Diaz FR, Moreno J, Tagle LH, East GA, Radic D (1999) Synth Met 100:187–194

    Article  CAS  Google Scholar 

  24. Cervini R, Li XC, Spencer GWC, Holmes AB, Moratti SC, Friend RH (1997) Synth Met 84:359–360

    Article  CAS  Google Scholar 

  25. Williams ATR, Winfield SA, Miller JN (1983) Analyst 108:1067–1071

    Article  CAS  Google Scholar 

  26. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, Plenum Publishers, New York

    Book  Google Scholar 

  27. Dao LH, Leclerc M, Guay J, Chevalier JW (1989) Synth Met 29:377–382

    Article  Google Scholar 

  28. Kuramoto N, Tomita A (1997) Synth Met 88:147–151

    Article  CAS  Google Scholar 

  29. Agrawal AK, Jenekhe SA (1993) Macromolecules 26:895–905

    Article  CAS  Google Scholar 

  30. Jenekhe SA, Alam MM, Zhu Y, Jiang S, Shevade AV (2007) Adv Mater 19:536–542

    Article  CAS  Google Scholar 

  31. Mostefai M, Pham MC, Marsault JP, Aubard J, Lacaze PC (1996) J Electrochem Soc 143:2116–2119

    Article  CAS  Google Scholar 

  32. Pham MC, Lacaze PC, Dao LH (1994) Synth Met 68:39–47

    Article  CAS  Google Scholar 

  33. Li XG, Huang MR, Yang Y (2000) Polym J 32:348–353

    Article  CAS  Google Scholar 

  34. Longun J, Buschle B, Nguyen N, Lo M, Iroh JO (2010) J Appl Polym Sci 118:3123–3130

    Article  CAS  Google Scholar 

  35. Kamahara K, Honda Y, Watanabe T, Kuwahara M (2000) Appl Microbiol Biotechnol 54:104–111

    Article  Google Scholar 

  36. Qu L, Shi G (2004) Chem Commun 24:2800–2801

    Article  Google Scholar 

  37. Vaganova E, Rozenberg M, Yitzchaik S (2000) Chem Mater 12:261–263

    Article  CAS  Google Scholar 

  38. Yang W, Pan CY, Luo MD, Zhang HB (2010) Biomacromolecules 11:1840–1846

    Article  CAS  Google Scholar 

  39. Feist FA, Basch TJ (2008) Phys Chem B 112:9700–9708

    Article  CAS  Google Scholar 

  40. Lu B, Xu J, Fan C, Jiang F, Miao H (2008) Electrochim Acta 54:334–340

    Article  CAS  Google Scholar 

  41. Bilici A, Dogan F, Yıldırım M, Kaya İ (2012) J Phys Chem C 116:19934–19940

    Article  CAS  Google Scholar 

  42. Yıldırım M, Kaya İ (2012) Synth Met 162:2443–2450

    Article  Google Scholar 

  43. Mordzinski A, Kuehnle W (1986) J Phys Chem 90:1455–1458

    Article  CAS  Google Scholar 

  44. Rodembusch FS, Leusin FP, Bordignon LB, Gallas MR, Stefani V (2005) J Photochem Photobiol A Chem 173:81–92

    Article  CAS  Google Scholar 

  45. Kaya İ, Temizkan K, Aydın A (2013) J Electroanal Chem 708:54–61

    Article  CAS  Google Scholar 

  46. Seo ET, Nelson RF, Fritsh JM, Marcoux LS, Leedy DW, Adams RN (1966) J Am Chem Soc 88:3498–3503

    Article  CAS  Google Scholar 

  47. Tsai FC, Chang CC, Liu CL, Chen WC, Jenekhe SA (2005) Macromolecules 38:1958–1966

    Article  CAS  Google Scholar 

  48. Kaya İ, Yıldırım M, Aydın A, Şenol D (2010) React Funct Polym 70:815–826

    Article  CAS  Google Scholar 

  49. Dubey S, Singh D, Misra RA (1998) Enzyme Microb Technol 23:432–437

    Article  CAS  Google Scholar 

  50. Li XG, Hou ZZ, Huang MR, Moloney MG (2009) J Phys Chem C 113:21586–21595

    Article  CAS  Google Scholar 

  51. Peng Y, Liu H, Zhang X (2009) J Polym Sci A:Polym Chem 47:1627–1635

    Article  CAS  Google Scholar 

  52. Li XG, Huang MR, Duan W, Yang YL (2002) Chem Rev 102:2925–3030

    Article  CAS  Google Scholar 

  53. Li XG, Huang MR, Yang Y (2001) Polymer 42:4099–4107

    Article  CAS  Google Scholar 

  54. Flynn J, Wall L (1966) J Polym Sci B Polym Lett 4:323–328

    Article  CAS  Google Scholar 

  55. Ozawa T (1965) Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  56. Tang W, Liu Y, Yang X, Wang C (2004) Ind Eng Chem Res 43:2054–2059

    Article  CAS  Google Scholar 

  57. Kissinger HF (1957) Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  58. Akahira T, Sunose T (1971) Res Rep Chiba Inst Techn 16:22–33

    Google Scholar 

  59. Friedman HL (1965) J Polym Sci C 6:183–195

    Article  Google Scholar 

  60. Kim S, Park JK (1995) Thermochim Acta 264:137–156

    Article  CAS  Google Scholar 

  61. Criado JM, Sanchez-Jimenez PE, Perez-Maqueda LA (2008) J Therm Anal Calorim 92:199–203

    Article  CAS  Google Scholar 

  62. Vyazovkin S (2001) J Comput Chem 22:178–183

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmet Kaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan, F., Kaya, İ., Bilici, A. et al. Chemical oxidative polymerization, optical, electrochemical and kinetic studies of 8-amino-2-naphthol. J Polym Res 22, 104 (2015). https://doi.org/10.1007/s10965-015-0737-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0737-z

Keywords

Navigation