Skip to main content
Log in

Generation of stable carbocations in polydiphenylenesulfophthalide and ortho-substituted polytriarylcarbinols upon water desorption

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Formation of “green” color centers (CCs) with two absorption bands (ABs) in the visible spectrum at 480 and 610 nm upon evacuation and/or weak heating (~100 °C) of films of polytriarylcarbinol (PTAC) and polydiphenylenesulfophthalide (PDSP) due to loss of sorbed water was observed. Electronic spectra (ES) of solutions of compounds that simulate polymers, PTAC and PDSP polymers in sulfuric acid were obtained. Isolated CCs having ABs in electronic spectra (ES) at 462 and 595 nm were generated by “slight” treatment of a PTAC film with sulfuric acid. The ES of a series of model carbocations and energies of ionization of the model triphenylcarbinols by proton, oxonium ion and Li+ ion were calculated in B3LYP/6-311G(d,p) approximation. Experimental and theoretical results are showed that the CCs in question are carbocation nature. The paper discusses the ionization mechanism in polymers and some aspects of heterogeneous (in water) and homogeneous (in organic polar solvent) methods of PTAC preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Scheme 3
Scheme 4
Scheme 5
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zolotukhin MG, Akhmetzyanov SS, Shishlov NM, Lachinov AN, Sultanova VS, Spirikhin LV, Khalilov LM (1992) A novel route to poly(triarylcarbinols). Macromol Chem 193:975–981

    Article  CAS  Google Scholar 

  2. Shishlov NM, Akhmetzyanov SS, Zolotukhin MG, Novoselov IV, Nikiforova GI, Kapina AP, Valyamova FG (1992) The formation of quinoid structure of the Chichibabin’s hydrocarbon type upon polytriphenylcarbinol thermolysis. Dokl AN SSSR 322:304–306 (in Russian)

    CAS  Google Scholar 

  3. Shishlov NM, Akhmetzyanov SS, Novoselov IV, Nikiforova GI (1997) Radical products of poly(triphenylcarbinol) thermolysis. Macromol Chem Phys 198:3397–3405

    Article  CAS  Google Scholar 

  4. Vasil’ev VG, Nikiforova GG, Rogovina LZ, Dubrovina LV, Bragina TP, Komarova LI, Timofeeva GI, Buzin MI, Salazkin SN, Shaposhnikova VV, Papkov VS (2002) Poly(diphenylene sulfophthalide) derivatives with polyelectrolyte and specific optical properties. Dokl Phys Chem 382:51–54

    Article  Google Scholar 

  5. Rogovina LZ, Vasil’ev VG, Nikiforova GG, Dubrovina LV, Bragina TP, Komarova LI, Timofeeva GI, Buzin MI, Salazkin SN, Shaposhnikova VV, Ryabev AN, Papkov VS (2002) Poly(diphenylenesulfophthalide) and the related alkali-metal salts. Polym Sci Ser A 44:817–823

    Google Scholar 

  6. Zolotukhin MG, Akhmetzyanov SS, Lachinov AN, Shishlov NM, Salazkin SN, Sangalov YA, Kapina AP (1990) Poly(arylenesulfophthalides). Dokl AN SSSR 312:1134 (in Russian)

    CAS  Google Scholar 

  7. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2004) Gaussian 03 (revision C.02). Gaussian, Inc, Wallingford

    Google Scholar 

  8. Zhurko GA, http://www.chemcraftprog.com.

  9. Becke AD (1993) Densityfunctional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  10. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  11. Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–654

    Article  Google Scholar 

  12. Shishlov NM, Akhmetzyanov SS, Zolotukhin MG, Novoselov IV, Kapina AP (1992) Formation of triphenylmethyl radicals in the thermolysis of polydiphenylenesulfophthalide and polytriphenylcarbinol. Russ Chem Bull 41:1307–1309

    Article  Google Scholar 

  13. Shishlov NM, Akhmetzyanov SS, Khursan SL (2013) Radical products of thermal decomposition of polydiphenylenesulfophthalide. Russ Chem Bull 62:1614–1624

  14. Venyaminov S, Prendergast FO (1997) Water H2O and D2O molar absorptivity in the 1000–4000 cm−1 range and quantitative infrared spectroscopy of aqueous solutions. Anal Biochem 248:234–245

    Article  CAS  Google Scholar 

  15. Izmailova LN, Kotov EI (1977) Spectrophotometric study of the mechanism of interaction of molecules with active centers of indicators on the surface of aluminosilicates. Kinet Katal 18:488–492 (in Russian)

    CAS  Google Scholar 

  16. Telichkun VP, Tarasevich YI (1978) Electronic spectra of arylcarbinols sorbed by kaolinite. Theor Exp Chem 14:316–319

    Article  Google Scholar 

  17. Grinter R, Mason SF (1964) Symmetry-determined relationships in the electronic spectra of arylmethyl ions. Trans Faraday Soc 60:264–273

    Article  CAS  Google Scholar 

  18. Chu TL, Weissman SI (1954) Symmetry classification of the energy levels of some triarylmethyl free radicals and their cations. J Am Chem Soc 22:21–25

    CAS  Google Scholar 

  19. Hopkinson AC, Wyatt PAH (1970) Substituent effects on the electronic absorption spectra of phenolphthalein and phenolsulphophthalein monopositive ions. J Chem Soc (B) 530–535. doi:10.1039/J29700000530

  20. Kraikin VA, Egorov AE, Puzin YI, Salazkin SN, Monakov YB (1999) Spectral characteristics of sulfuric acid solutions of terphenylenephthalide and the polymer chain length. Dokl Phys Chem 367:225–230

    Google Scholar 

  21. Kraikin VA, Zolotukhin MG, Salazkin SN, Rafikov SR (1985) Qualitative and quantitative determination of polyarylene phthalides based on their ability to form intensely coloured solutions in concentrated sulphuric acid. Polym Sci USSR 27:474–480

    Article  Google Scholar 

  22. Kraikin VA, Musina ZN, Egorov AE, Puzin YI, Salazkin SN, Monakov YB (2000) Conjugation in chromophore groups of low- and high-molecular-weight arylenephthalides and an equation of main absorption wavelength. Dokl Phys Chem 372:57–61

    Google Scholar 

  23. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  24. Fabian J (2010) TDDFT-calculations of Vis/NIR absorbing compounds. Dyes Pigments 84:36–53

    Article  CAS  Google Scholar 

  25. Preat J, Jacquemin D, Wathelet V, Andre J-M, Perpete EA (2007) Towards the understanding of the chromatic behavior of triphenylmethane derivatives. Chem Phys 335:177–186

    Article  CAS  Google Scholar 

  26. Ng EK, Adam FC (1964) Energy levels of triarylmethyl carbonium ions. Can J Chem 42:810–816

    Article  CAS  Google Scholar 

  27. Reichardt C (2003) Solvents and solvent effects in organic chemistry, 3rd edn. WILEY-VCH Verlag GmbH & Co., Weinheim

    Google Scholar 

  28. Basch H, Ratner M (2004) Molecular binding at gold transport interfaces. III. Field dependence of electronic properties. J Chem Phys 120:5761–5770

    Article  CAS  Google Scholar 

  29. Shishlov NM, Akhmetzyanov SS, Khursan SL (2010) IR spectroscopic manifestations of hydration of poly(diphenyl sulfophthalide) during its storage. Russ J Phys Chem B 4:846–859

    Article  Google Scholar 

  30. Guthrie JP (1978) Hydrolysis of esters of oxy acids: pKa values for strong acids. Can J Chem 56:2342–2354

    Article  CAS  Google Scholar 

  31. Sadaoka Y, Matsuguchi M, Sakai Y (1991) Optical fiber humidity sensor using NafionR-triphenylcarbinol composite. J Electrochem Soc 138:614–615

    Article  CAS  Google Scholar 

  32. Carey FA, Sundberg RJ (2007) Advanced Organic Chemistry Part A: Structure and mechanisms, Springer, New York

  33. O’Neill MA, Cozens FL, Schepp NP (2000) Generation and direct observation of the 9-fluorenyl cation in non-acidic zeolites. Tetrahedron 56:6969–6977

    Article  Google Scholar 

  34. O’Neill MA, Cozens FL (2003) Influence of alkali metal cations on the photoheterolysis of 9- cyclopropyl-9-fluorenol and the reactivity of 9-cyclopropyl-9-fluorenyl cation in non-acidic zeolites. Can J Chem 81:647–659

    Article  Google Scholar 

  35. Ikeda SH, Kobayshi H, Sonoda T, Nie J, Yagupolskii Y, Mori A (2001) Effect of counter anions on the lewis acidity of lithium ion in trityl cation formation. Report of Institute of Advanced Material Study, Kyushu University, 15: 169–175

  36. Shishlov NM, Akhmetzyanov SS, Khursan SL (2015) Thermolysis of polytriarylcarbinol – lithium salt of polydiphenylenesulfophthalide. Izv. AN. Ser. Khim., in press (in Russian)

  37. Shishlov NM, Khursan SL (2011) On the possibility of single_electron transfer during alkaline hydrolysis of sulfophthalides. Russ J Phys Chem B 5:737–747

    Article  CAS  Google Scholar 

  38. Shishlov NM, Khrustaleva VN, Akhmetzyanov SS, Murinov KY, Asfandiarov NL, Lachinov AN (2000) Formation of color centers and paramagnetic species by alkaline hydrolysis of polydiphenylenesulfophthalide. Russ Chem Bull 49:298–302

  39. Shishlov NM, Maslennikov SI, Khrustaleva VN, Akhmetzyanov SS, Sudovikova MN, Muslukhov RR, Spirikhin LV (2002) Four main reduced forms of polydiphenylenesulfophthalide. Dokl Phys Chem 387:320–323

    Article  CAS  Google Scholar 

  40. Malathi M, Sabesan R, Krishnan S (2004) IR carbonyl band intensity studies in N, N-dimethyl formamide and N, N-dimethyl acetamide on complex formation with phenols. Curr Sci 86:838–842

    CAS  Google Scholar 

  41. Brauman JI, Archie WC (1970) The reaction of trityl carbonium ion with water. J Am Chem Soc 92:5981–5986

    Article  CAS  Google Scholar 

  42. Kampar VE (1982) The charge-transfer complexes of neutral donors with acceptors - organic cations. Russ Chem Rev 51:107–118

    Article  Google Scholar 

  43. Das PK (1993) Transient carbocations generated by laser flash photolysis and pulse radiolysis. Chem Rev 93:119–144

    Article  CAS  Google Scholar 

  44. Scaiano JC, Garcia H (1999) Intrazeolite photochemistry: toward supramolecular control of molecular photochemistry. Acc Chem Res 32:783

    Article  CAS  Google Scholar 

  45. Arai H, Saito Y, Yoneda Y (1967) The electronic and ESR spectra of triphenylmethane adsorbed on solid acid catalyst. Bull Chem Soc Jpn 40:312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai M. Shishlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishlov, N.M., Akhmetzyanov, S.S. & Khursan, S.L. Generation of stable carbocations in polydiphenylenesulfophthalide and ortho-substituted polytriarylcarbinols upon water desorption. J Polym Res 22, 58 (2015). https://doi.org/10.1007/s10965-015-0698-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0698-2

Keywords

Navigation