Skip to main content
Log in

Effects of pH on aggregation behavior of sodium lignosulfonate (NaLS) in concentrated solutions

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Concentrated sodium lignosulfonate (NaLS) solutions have wide industrial applications. Therefore, their aggregation behavior at different pH (2.89–11.81) was investigated by means of rheology, conductivity, acid–base titration, and zeta potential measurements. It was found that all the NaLS solutions were pseudoplastic fluids. In the pH range of 2.89–10.34, higher pH resulted in increased viscosity, pseudoplasticity, and thixotropy. The dynamic viscoelastic measurements characterized by frequency and temperature sweeps showed that the storage modulus, loss modulus, and complex viscosity increased, but the loss tangent and the crossover temperature where storage modulus equaled loss modulus decreased with increasing pH. The change in rheological properties as a function of pH may be related to the molecular expansion effect. The conductivity, acid–base titration, and zeta potential measurements revealed the formation of a larger and higher-strength network structure at pH 2.89–10.34 as a result of the ionization of sulfonic, carboxyl, and phenolic hydroxyl groups. As the pH exceeded 10.34, NaLS solutions exhibited decreased viscosity, pseudoplasticity, thixotropy, and elasticity, and the aggregation effect weakened, which may be caused by the electrostatic repulsive forces becoming too strong and disruption of hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mun SP, Cai ZY, Zhang JL (2013) Fe-catalyzed thermal conversion of sodium lignosulfonate to graphene. Mater Lett 100:180–183

    Article  CAS  Google Scholar 

  2. Xing WY, Yuan HX, Zhang P, Yang HY, Song L, Hu Y (2013) Functionalized lignin for halogen-free flame retardant rigid polyurethane foam: preparation, thermal stability, fire performance and mechanical properties. J Polym Res 20:234

    Article  Google Scholar 

  3. Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review. COST Action E35 2004–2008: wood machining-micromechanics and fracture. Holzforschung 63:121–129

    Article  Google Scholar 

  4. Stevanic JS, Salmén L (2009) Orientation of the wood polymers in the cell wall of spruce wood fibres. Holzforschung 63:497–503

    Article  CAS  Google Scholar 

  5. Myrvold BO (2013) Salting-out and salting-in experiments with lignosulfonates (LSs). Holzforschung 67:549–557

    Article  CAS  Google Scholar 

  6. Yao QX, Xie JJ, Liu JX, Kang HM, Liu Y (2014) Adsorption of lead ions using a modified lignin hydrogel. J Polym Res 21:465

    Article  Google Scholar 

  7. Gidh AV, Decker SR, See CH, Himmel ME, Williford CW (2006) Characterization of lignin using multi-angle laser light scattering and atomic force microscopy. Anal Chim Acta 555:250–258

    Article  CAS  Google Scholar 

  8. Mansouri NE, Salvadό J (2006) Structural characterization of technical lignin for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crop Prod 24:8–16

    Article  Google Scholar 

  9. Orlando US, Okuda T, Baes AU, Nishijima W, Okada M (2003) Chemical properties of anion-exchangers prepared from waste natural materials. React Funct Polym 55:311–318

    Article  CAS  Google Scholar 

  10. Telysheva G, Dizhbite T, Paegle E, Shapatin A, Demidov I (2001) Surface-active properties of hydrophobized derivatives of lignosulfonates: effect of structure of organosilicon modifier. J Appl Polym Sci 82:1013–1020

    Article  CAS  Google Scholar 

  11. Zhou MS, Qiu XQ, Yang DJ, Lou HM, Ouyang XP (2007) High-performance dispersant of coal-water slurry synthesized from wheat straw alkali lignin. Fuel Process Technol 88:375–382

    Article  CAS  Google Scholar 

  12. Ouyang XP, Ke LX, Qiu XQ, Guo YX, Pang YX (2009) Sulfonation of alkali lignin and its potential use in dispersant for cement. J Disper Sci Technol 30(1):1–6

    Article  CAS  Google Scholar 

  13. Chiwetelu C, Hornof V, Neale G, George A (1994) Use of mixed surfactants to improve the transient interfacial tension behavior of heavy oil/alkaline systems. Can J Chem Eng 72:530–540

    Article  Google Scholar 

  14. Qian Y, Deng YH, Guo YQ, Yi CH, Qiu XQ (2013) Determination of absolute molecular weight of sodium lignosulfonate (NaLS) by laser light scattering (LLS). Holzforschung 67(3):265–271

    Article  CAS  Google Scholar 

  15. Yang DJ, Qiu XQ, Zhou MS, Lou HM (2007) Properties of sodium lignosulfonate as dispersant of coal water slurry. Energ Convers Manage 48:2433–2438

    Article  CAS  Google Scholar 

  16. Dilling P, Huguenin S (1999) High activity sulfonated lignin dye dispersants. US Patent 08/712905

  17. Rezanowich A, Yean W, Goring DA (1964) High resolution electron microscopy of sodium lignin sulfonate. J Appl Polym Sci 8:1801–1812

    Article  CAS  Google Scholar 

  18. Goring DA (1971) Polymer properties of lignin and lignin derivatives. In: Sarkanen KV, Ludwig CH (eds) Lignins, occurrence, formation, structure and reactions. Wiley-Interscience, New York, pp 695–768

    Google Scholar 

  19. Goring DA, Vuong R, Gancet C, Chanzy H (1979) The flatness of lignosulfonate macromolecules as demonstrated by electron microscopy. J Appl Polym Sci 24:931–936

    Article  CAS  Google Scholar 

  20. Myrvold BO (2008) A new model for the structure of lignosulfonate phonates (part I): behavior in dilute solutions. Ind Crop Prod 27:214–219

    Article  CAS  Google Scholar 

  21. Vainio U, Lauten RA, Serimaa R (2008) Small-angle X-ray scattering and rheological characterization of aqueous lignosulfonate solutions. Langmuir 24:7735–7743

    Article  CAS  Google Scholar 

  22. García-Mateos I, Pérez S, Velázquez MM (1997) Interaction between cetyl pyridinium chloride and water-soluble polymers in aqueous solutions. J Colloid Interf Sci 194:356–363

    Article  Google Scholar 

  23. Wang W, Xu DS, Li SQ, Qin W (1994) Polyelectrolyte-rheological properties for concentrated solution of chitosan. Acta Polym Sin 3:328–334

    Google Scholar 

  24. Ying ZR, Li RX, Wu DC (2000) Shear-thickening feature of concentrated aqueous solutions of water-soluble polyesters. Acta Polym Sin 4:448–451

    Google Scholar 

  25. Qiu XQ, Tang QQ, Zhou MS, Xu RL, Yang DJ (2014) Researches on aggregation behaviors of sodium lignosulfonate in concentrated solutions. Acta Polym Sin 12:1585–1592

    Google Scholar 

  26. Tang QQ, Zhou MS, Yang DJ, Qiu XQ (2014) Effects of concentration and temperature on the rheological behavior of concentrated sodium lignosulfonate (NaLS) solutions. Holzforschung. doi:10.1515/hf-2014-0071

    Google Scholar 

  27. Lee KE, Khan I, Morad N, Teng TT, Poh BT (2012) Physicochemical and rheological properties of novel magnesium salt-polyacrylamide composite polymers. J Disper Sci Technol 33(9):1284–1291

    Article  CAS  Google Scholar 

  28. Duan L, Li JH, Li CH, Li GY (2013) Effects of NaCl on the rheological behavior of collagen solution. Korea-Aust Rheol J 25(3):137–144

    Article  Google Scholar 

  29. Wang C, Li XR, Du B, Shen YD, Li PZ (2013) Study on the self-assembly properties of fluorinated hydrophobically associating polyacrylamide. J Polym Res 20:42

    Article  Google Scholar 

  30. Mewis J, Wagner NJ (2009) Thixotropy. Adv Colloid Interfac 147:214–227

    Article  Google Scholar 

  31. Schramm G (2000) A practical approach to rheology and rheometer. Karlsruhe, Germany

  32. Du YG, Gao JG, Yang JB, Liu XQ (2012) Dynamic rheological behavior and mechanical properties and of PVC/ASA blends. J Polym Res 19:9993

    Article  Google Scholar 

  33. Ma JY, Lin YB, Chen XL, Zhao BT, Zhang J (2014) Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions. Food Hydrocoll 38:119–128

    Article  CAS  Google Scholar 

  34. Tunick MH (2011) Small-strain dynamic rheology of food protein networks. J Agr Food Chem 59:1481–1486

    Article  CAS  Google Scholar 

  35. Kasapis S, Mitchell JR (2001) Definition of the rheological glass transition temperature in association with the concept of iso-free-volume. Int J Biol Macromo 29:315–321

    Article  CAS  Google Scholar 

  36. Korhonen M, Hellen L, Hirvonen J, Yliruusi J (2001) Rheological properties of creams with four different surfactant combinations-effect of storage time and conditions. Int J Pharm 221:187–196

    Article  CAS  Google Scholar 

  37. Lai GL, Li Y, Li GY (2008) Effect of concentration and temperature on the rheological behavior of collagen solution. Int J Biol Macromol 42:285–291

    Article  CAS  Google Scholar 

  38. Shi A, Wang LJ, Li D, Adhikari B (2012) The effect of NaCl on the rheological properties of suspension containing spray dried starch nanoparticles. Carbohyd Polym 90:1530–1537

    Article  CAS  Google Scholar 

  39. Zhou MS, Huang K, Qiu XQ, Yang DJ (2012) Content determination of phenolic hydroxyl and carboxyl in lignin by aqueous phase potentiometric titration. J Chem Ind Eng 63:258–265

    CAS  Google Scholar 

  40. Ratinac KR, Standard OC, Bryant PJ (2004) Lignosulfonate adsorption and stabilization of lead zirconate titanate in aqueous suspension. J Colloid Sci 273:442–454

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial supports of the International S & T Cooperation Program of China (2013DFA41670), the National Natural Science Foundation of China (21476092), the Project 973 (2012CB215302), and Guangdong Province Science and Technology Major Project (2012A080105012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingsong Zhou or Xueqing Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Zhou, M., Yang, D. et al. Effects of pH on aggregation behavior of sodium lignosulfonate (NaLS) in concentrated solutions. J Polym Res 22, 50 (2015). https://doi.org/10.1007/s10965-015-0689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0689-3

Keywords

Navigation