Skip to main content
Log in

Synthesis and properties of fluorene-containing sulfonated poly (ether ether ketone) as proton-exchange membrane for PEM fuel cell application

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of sulfonated poly(ether ether ketone)s were successfully synthesized via nucleophilic displacement condensation. The membranes are accordingly cast from their DMSO solutions, and fully characterized by determining the ion-exchange capacity, water uptake, dimensional stabilities, proton conductivity and mechanical properties. Among membranes, the block-7c-3 was successfully synthesized by the reaction of Block-6c with chlorosulfonic acid, with the feed ratio of repeated unit to chlorosulfonic acid of 1:8. The experimental results show that the membrane from block-7c-3 has good mechanical, oxidative and dimensional stabilities together with high proton conductivity (5.15 × 10−2 Scm−1) at 80 °C under 100 % relative humidity. The membranes also possess excellent thermal and dimensional stabilities, in this respect, they are potential and promising proton conducting membrane material for PEM full cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3

Similar content being viewed by others

References

  1. Prater KB (1994) Polymer electrolyte fuel cells: a review of recent developments. J Power Sources 51:129–144

    Article  CAS  Google Scholar 

  2. Thomas K (1996) Fuel cells for transport: can the promise be fulfilled technical requirements and demands from customers. J Power Sources 61:61–69

    Article  Google Scholar 

  3. Di Noto V, Lavina S, Giffin GA (2011) Polymer electrolytes: present, past and future. Electrochim Acta 57:4–13

    Article  Google Scholar 

  4. Borroni-Bird CE (1996) Fuel cell commercialization issues for light-duty vehicle applications. J Power Sources 61:33–48

    Article  CAS  Google Scholar 

  5. Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463

    Article  CAS  Google Scholar 

  6. Di Noto V, Zawodzinski TA, Ml HA (2012) Polymer electrolytes for a hydrogen economy. Int J Hydrog Energy 37(7):6120–6131

    Article  Google Scholar 

  7. Jacques R, Deborah JJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cell. Annu Rev Mater Res 33:503–555

    Article  Google Scholar 

  8. Gupta B, Buchi FN, Scherer GG (1993) Materials research aspects of organic solid proton conductors. Solid State Ionics 61:213–218

    Article  CAS  Google Scholar 

  9. Flint SD, Slade RCT (1997) Investigation of radiation-grafted PVDF-g-polystyrene- sulfonic-acid ion exchange membranes for use in hydrogen oxygen fuel cells. Solid State Ionics 97:299–307

    Article  CAS  Google Scholar 

  10. Jones JD, Roziere J (2001) Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications. J Membr Sci 185:41–58

    Article  CAS  Google Scholar 

  11. Bae JM, Honma I, Murata M (2002) Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells. Solid State Ionics 147:189–194

    Article  CAS  Google Scholar 

  12. Roziere J, Jones DJ, Marrony M (2001) On the doping of sulfonated polybenzimidazole with strong bases. Solid State Ionics 145:61–68

    Article  CAS  Google Scholar 

  13. Giffin GA, Piga M, Lavina S (2012) Characterization of sulfated-zirconia/Nafion composite membranes for proton exchange membrane fuel cells. J Power Sources 198:66–75

    Article  CAS  Google Scholar 

  14. Tezuka T, Tadanaga K, Hayashi A, Tatsumisago M (2006) Inorganic–organic hybrid membranes with anhydrous proton conduction prepared from 3-aminopropyltriethoxysilane and sulfuric acid by the sol–gel method. J Am Chem Soc 128:16470–16471

    Article  CAS  Google Scholar 

  15. Di Noto V, Piga M, Giffin GA (2011) New sulfonated poly (p-phenylenesulfone)/poly (1-oxotrimethylene) nanocomposite proton-conducting membranes for PEMFCs. Chem Mater 23(20):4452–4458

    Article  Google Scholar 

  16. Asano N, Miyatake K, Watanabe M (2004) Hydrolytically stable polyimide inomomer for fuel cell applilcations. Chem Mater 16:2841–2843

    Article  CAS  Google Scholar 

  17. Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M (2006) Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. J Am Chem Soc 128:1762–1769

    Article  CAS  Google Scholar 

  18. Roy A, Hickner MA, Yu X (2006) Influence of chemical composition and sequence length on the transport properties of proton exchange membranes. J Polym Sci B Polym Phys 44:2226–2239

    Article  CAS  Google Scholar 

  19. Ghassemi H, McGrath JE, Zawodzinski J (2006) Multiblock sulfonated–fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell. Polymer 47:4132–4139

    Article  CAS  Google Scholar 

  20. Matsumura S, Hlil R, Lepiller C, Gaudet J, Guay D, Hay AS (2008) Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end groups: novel linear aromatic poly(sulfide − ketone)s. Macromolecules 41:277–280

    Article  CAS  Google Scholar 

  21. Matsumura S, Hlil AR, Lepiller C, Gaudet J, Guay D, Shi Z-Q, Holdcroft S, Hay AS (2008) Macromolecules 41:281–284

    Article  CAS  Google Scholar 

  22. Tian SH, Meng YZ, Hay AS (2009) Membranes from poly(aryl ether)-based ionomers containing randomly distritbuted nanoclusters of 6 or 12 sulfonic acid groups. Macromolecules 42:1153–1160

    Article  CAS  Google Scholar 

  23. Pang J, Zhang H, Li XF, Jiang ZH (2007) Novel wholly aromatic sulfonated poly(arylene ether) copolymers containing sulfonic acid groups on the pendants for proton exchange membrane materials. Macromolecules 40:9435–9442

    Article  CAS  Google Scholar 

  24. Yasuda T, Li Y, Miyatake K, Hirai M, Nanasawa M, Watanabe M (2006) Synthesis and properties of polyimides bearing acid groups on long pendant aliphatic chains. J Polym Sci A Polym Chem 44:3995–4005

    Article  CAS  Google Scholar 

  25. Hu H, Xiao M, Wang SJ, Meng YZ (2010) Poly(fluorenyl ether ketone)ionomers containing separated hydrophilic multiblocks usedin fuel cells as proton exchange membranes. Int J Hydrog Energy 35:682–9

    Article  CAS  Google Scholar 

  26. Shang XY, Tian SH, Kong LH, Meng YZ (2005) Synthesis and characterization of sulfonated fluorene-containing poly(arylene ether ketone) for proton exchange membrane. J Membr Sci 266:94–101

    Article  CAS  Google Scholar 

  27. Wang SJ, Luo JJ, Meng YZ (2012) Design, synthesis and properties of polyaromatics with hydrophobic and hydrophilic long blocks as proton exchange membrane for PEM fuel cell application. Int J Hydrog Energy 37:4545–4552

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank for the Natural Science Foundation of China (21306124) financial support of this work and Taiyuan University of Technology College Students’ Innovative Entrepreneurial Training Plan (Grant 13060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Jie Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J.J., Song, Y.H., Wang, Y.L. et al. Synthesis and properties of fluorene-containing sulfonated poly (ether ether ketone) as proton-exchange membrane for PEM fuel cell application. J Polym Res 22, 41 (2015). https://doi.org/10.1007/s10965-015-0683-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0683-9

Keywords

Navigation