Skip to main content
Log in

Expanded corn starch a novel material as macroinitiator/solid support in SI and AGET ATRP: GMA polymerization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Here we have shown the use of expanded corn starch (ECS) as an effective macro-initiator in Surface Initiated Atom Transfer Radical Polymerization (SI-ATRP) as well as a solid support in catalytic system for Activators Generated by Electron Transfer-Atom Transfer Radical Polymerization (AGET ATRP) for poly-glycidyl methacrylate (PGMA) with reasonably narrow polydispersity (PDI: 1.3–1.6). ECS having characteristic V type crystallinity imparts high surface area (~50 m2g−1), pore volume (0.43 cm3g−1) and high thermal stability enabling it as a better material over CS for use in ATRP. Also, catalytic system in AGET ATRP based on ECS can be recycled for several times without substantial loss of activity. Thus, ECS proves to be a versatile material that can be used in different ways in ATRP leading to polymers/polymer-hybrids with controlled molecular weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AGET-ATRP:

Activators generated by electron transfer-atom transfer radical polymerization

BIBB:

2-Bromoisobutyryl bromide

CS:

Corn starch

EBriB:

Ethyl 2-bromoisobutyrate

ECS:

Expanded corn starch

FT-IR:

Fourier tranform infrared spectroscopy

GMA:

Glycidyl methacrylate

L:

Ligand

LRP:

Living radical polymerization

NMR:

Nuclear magentic resonance

PGMA:

Poly (glycidyl methacrylate)

PMDETA:

N,N,N’,N”,N”’-Pentamethyldiethylenetriamine

SI-ATRP:

Surface initiated atom transfer radical polymerization

SEM:

Scanning electron microscopy

TEA:

Triethyl ammine

TEM:

Transmission electron microscopy

TGA:

Thermal gravimetric analysis

XRD:

X-ray diffraction.

References

  1. Han TL, Kumar RN, Rozman HD, Noor MAM (2003) GMA grafted sago starch as a reactive component in ultra violet radiation curable coatings. Carbohydr Polym 54:509–516

    Article  CAS  Google Scholar 

  2. Athawale VD, Rathi SC (1997) Syntheses and characterization of starch-poly(methacrylic acid) graft copolymers. J Appl Polym Sci 66:1399–1403

    Article  CAS  Google Scholar 

  3. Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerizatio. Chem Rev 101:3689–3745

    Article  CAS  Google Scholar 

  4. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990

    Article  CAS  Google Scholar 

  5. Ouchi M, Terashima T, Sawamoto M (2008) Precision control of radical polymerization via transition metal catalysis: from dormant species to designed catalysts for precision functional polymers. Acc Chem Res 41:1120–1132

    Article  CAS  Google Scholar 

  6. Watanabe Y, Ando T, Kamigaito M, Sawamoto M (2001) Ru(Cp*)Cl(PPh3)2: a versatile catalyst for living radical polymerization of methacrylates, acrylates, and styrene. Macromolecules 34:4370–4374

    Article  CAS  Google Scholar 

  7. Baek KY, Kamigaito M, Sawamoto M (2002) Synthesis of star-shaped copolymers with methyl methacrylate and n-butyl methacrylate by metal-catalyzed living radical polymerization: block and random copolymer arms and microgel core. J Polym Sci A Polym Chem 40:633–641

    Article  CAS  Google Scholar 

  8. Chen YH, Wang CY, Chen JX, Liu XX, Tong Z (2009) Growth of lightly crosslinked PHEMA brushes and capsule formation using pickering emulsion interface-initiated ATRP. J Polym Sci A Polym Chem 47:1354–1367

    Article  CAS  Google Scholar 

  9. Fangzhi Z, Xiping L, Zhixing S, Hong Z (2008) Preparation and characterization of polystyrene grafted magnesium hydroxide nanoparticles via surface initiated atom transfer radical polymerization. J Polym Res 15:319–323

    Article  Google Scholar 

  10. Jian L, Zhidan S, Yingpeng Z, Qiang R, Qiang Y, Yin C, Masayuki Y, Yuji I (2010) Characterization of poly(butyl acrylate) diols prepared via atom transfer radical polymerization and subsequent modification. J Polym Res 17:551–556

    Article  Google Scholar 

  11. Wu T, Zhang YF, Wang XF, Liu SY (2008) Fabrication of hybrid silica nanoparticles densely grafted with thermoresponsive poly(N-isopropylacrylamide) brushes of controlled thickness via surface-initiated atom transfer radical polymerization. Chem Mater 20:101–109

    Article  CAS  Google Scholar 

  12. Wenping W, Jiayuan T, Zhongqi J, Xiaoxuan L, Zhenghui X (2012) Grafting of amphiphilic polymers containing quaternary ammonium group on SiO2 surface via surface-initiated ATRP. J Polym Res 19:9804

    Article  Google Scholar 

  13. Lei X, Hongbo L, Rumin W, Liang C (2011) A novel route for the synthesis of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) grafted titania nanoparticles via ATRP. J Polym Res 18:1017–1021

    Article  Google Scholar 

  14. Hong H, Gao C, Yan D (2004) Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J Am Chem Soc 126:412–413

    Article  Google Scholar 

  15. Shanmugharaj AM, Bae JH, Nayak RR, Ryu SH (2007) Preparation of poly(styrene-co-acrylonitrile)-grafted multiwalled carbon nanotubes via surface-initiated atom transfer radical polymerization. J Polym Sci A Polym Chem 45:460–470

    Article  CAS  Google Scholar 

  16. Kamata K, Lu Y, Xia Y (2003) Synthesis and characterization of monodispersed core − shell spherical colloids with movable cores. J Am Chem Soc 125:2384–2385

    Article  CAS  Google Scholar 

  17. Rakhmatullina E, Mantion A, Bürgi T, Malinova V, Meier W (2009) Solid-supported amphiphilic triblock copolymer membranes grafted from gold surface. J Polym Sci A Polym Chem 47:1–13

    Article  CAS  Google Scholar 

  18. Ding S, Floyd JA, Walters KB (2009) Comparison of surface confined ATRP and SET-LRP syntheses for a series of amino (meth)acrylate polymer brushes on silicon substrates. J Polym Sci A Polym Chem 47:6552–6560

    Article  CAS  Google Scholar 

  19. Sanjuan S, Tran Y (2008) Synthesis of random polyampholyte brushes by atom transfer radical polymerization. J Polym Sci A Polym Chem 46:4305–4319

    Article  CAS  Google Scholar 

  20. Wang W, Cao H, Zhu G, Wang P (2010) A facile strategy to modify TiO2 nanoparticles via surface-initiated ATRP of styrene. J Polym Sci A Polym Chem 48:1782–1790

    Article  CAS  Google Scholar 

  21. Liu P, Su Z (2005) Surface-initiated atom transfer radical polymerization (SI-ATRP) of n-butyl acrylate from starch granules. Carbohydr Polym 62:159–163

    Article  CAS  Google Scholar 

  22. Nurmi L, Holappa S, Millonen H, Seppälä J (2007) Controlled grafting of acetylated starch by atom transfer radical polymerization of MMA. Eur Polym J 43:1372–1382

    Article  CAS  Google Scholar 

  23. Tizzotto M, Charlot A, Fleury E, Stenzel M, Bernard J (2010) Modification of polysaccharides through controlled/living radical polymerization grafting—towards the generation of high performance hybrids. Macromol Rapid Commun 31:751–1772

    Google Scholar 

  24. Jakubowski W, Matyjaszewski K (2006) Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers. Angew Chem Int Ed 45:4482–4486

    Article  CAS  Google Scholar 

  25. Leila AA, Vahid HA, Hossein RM, Leila H, Mehdi SK (2011) Use of clay-anchored reactive modifier for the synthesis of poly (styrene-co-butyl acrylate)/clay nanocomposite via in situ AGET ATRP. J Polym Res 19:9773

    Google Scholar 

  26. Jakubowski W, Min K, Matyjaszewski K (2006) Activators regenerated by electron transfer for atom transfer radical polymerization of styrene. Macromolecules 39:39–45

    Article  CAS  Google Scholar 

  27. Ayse A, Deniz S, Fatime E, Ali EM, Ayhan B (2014) An investigation of proton conductivity of PVDF based 5-aminotetrazole functional polymer electrolyte membranes (PEMs) prepared via direct surface-initiated AGET ATRP of glycidyl methacrylate (GMA). J Polym Res 21:437

    Article  Google Scholar 

  28. Munirasu S, Aggarwal R, Baskaran D (2009) Highly efficient recyclable hydrated-clay supported catalytic system for atom transfer radical polymerization. Chem Commun 4518–4520

  29. Bisht HS, Chatterjee AK (2001) Living free-radical polymerization— a review. J Macromol Sci C Polym Rev 41(3):139–173

    Article  Google Scholar 

  30. Bisht HS, Ray SS, Pandey D, Sharma CD, Chatterjee AK (2002) Copolymerization of dodecyl-4-vinyl benzoate and dodecyl acrylate by conventional, atom transfer, and nitroxide-mediated free-radical polymerization. J Polym Sci A Polym Chem 40:1818–1830

    Article  CAS  Google Scholar 

  31. Bisht HS, Ray SS, Chatterjee AK (2003) Conventional and atom transfer radical copolymerization of n-octyl acrylate–styrene: chemoselectivity and monomer sequence distribution by 1H NMR. Eur Polym J 39:1413–1420

    Article  CAS  Google Scholar 

  32. Doi S, Clark JH, Macquarrie DJ, Milkowski K (2002) New materials based on renewable resources: chemically modified expanded corn starches as catalysts for liquid phase organic reactions. Chem Commun 2632–2633

  33. Gronnow MJ, Luque R, Macquarrie DJ, Clark JH (2005) A novel highly active biomaterial supported palladium catalyst. Green Chem 7:552–557

    Article  CAS  Google Scholar 

  34. Corre DL, Bras J, Dufresne A (2010) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 11:1139–1153

    Article  Google Scholar 

  35. Katz JR (1930) Über die anderungen in Rontgenspektrum der stärke brim baker and beam altbacken warden des brutes. Z Phys Chem 150:37–59

    CAS  Google Scholar 

  36. Hizukuri S, Kaneko T, Takeda Y (1983) Measurement of the chain-length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules. Biochim Biophys Acta 760:188–191

    Article  CAS  Google Scholar 

  37. Imberty A, Chanzy H, Perez S, Buleon A, Tran V (1987) New three-dimensional structure for A-type starch. Macromolecules 20:2634–2636

    Article  CAS  Google Scholar 

  38. Imberty A, Perez S (1988) A revisit to the three-dimensional structure of B-type starch. Biopolymers 27:1205–1221

    Article  CAS  Google Scholar 

  39. Cheetham NWH, Tao L (1998) Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym 36:277–284

    Article  CAS  Google Scholar 

  40. Budarin V, Clark JH, Deswarte FEI, Hardy JJE, Hunt AJ, Kerton FM (2005) Delicious not siliceous: expanded carbohydrates as renewable separation media for column chromatography. Chem Commun 2903

  41. Hovestad NJ, Koten GV, Bon SAF, Haddleton DM (2000) Copper(I) bromide/N-(n-octyl)-2-pyridylmethanimine − mediated living-radical polymerization of methyl methacrylate using carbosilane dendritic initiators. Macromolecules 33:4048–4052

    Article  CAS  Google Scholar 

  42. Ma X, Jian R, Chang PR, Yu J (2008) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9:3314–3320

    Article  CAS  Google Scholar 

  43. Choi EJ, Kim CH, Park JK (1999) Synthesis and characterization of starch-g-polycaprolactone copolymer. Macromolecules 32:7402–7408

    Article  CAS  Google Scholar 

  44. Fang JM, Fowler PA, Tomkinson J, Hill CA (2002) The preparation and characterisation of a series of chemically modified potato starches. Carbohydr Polym 47:245–252

    Article  CAS  Google Scholar 

  45. Shamai K, Bianco-Peled H, Shimoni E (2003) Polymorphism of resistant starch type III. Carbohydr Polym 54:363–369

    Article  CAS  Google Scholar 

  46. Frost K, Kaminski D, Kirwan G, Lascaris E, Shanks R (2009) Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydr Polym 78:543–548

    Article  CAS  Google Scholar 

  47. Chatterjee AK, Phatak SD, Murthy PS, Joshi GC (1994) Comb-type polymers and their interaction with wax crystals in waxy hydrocarbon fluids: Wide-angle X-ray diffraction studies. J Appl Polym Sci 52:887–894

    Article  CAS  Google Scholar 

  48. Hsieh HWS, Post B, Morawetz HJ (1976) A crystallographic study of polymers exhibiting side-chain crystallization. Polym Sci Polym Phys 14:1241–1255

    Article  CAS  Google Scholar 

  49. Ajiboye SI, Brown DR (1990) Electron spin resonance study of soluble copper(II)–cellulose complexes. J Chem Soc Faraday Trans 86:65–68

    Article  CAS  Google Scholar 

  50. Salmon PS, Neilson GW (1989) The coordination of Cu(II) in a concentrated copper nitrate solution. J Phy Condens Matter 1:5291

    Article  CAS  Google Scholar 

  51. Gadd KF (1982) A new solvent for cellulose. Polymer 23:1867–1869

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Director, CSIR-Indian Institute of Petroleum for his support and encouragement. AB thanks Council of Scientific and Industrial Research (CSIR) for providing fellowship in the form of Senior Research Fellowship (SRF). The authors thank C.D. Sharma, K.L.N. Sivakumar, Raghuvir Singh, Sandeep Saran and Piyush Gupta of CSIR-IIP for providing GPC, SEM, FTIR, XRD and NMR results respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth S. Ray.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, A., Ray, S.S. & Chatterjee, A.K. Expanded corn starch a novel material as macroinitiator/solid support in SI and AGET ATRP: GMA polymerization. J Polym Res 22, 23 (2015). https://doi.org/10.1007/s10965-015-0668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0668-8

Keywords

Navigation