Journal of Polymer Research

, 21:599 | Cite as

Functionalized graphene oxide/polyimide nanocomposites as highly CO2-selective membranes

  • Hadis Koolivand
  • Alireza SharifEmail author
  • Mehdi Razzaghi Kashani
  • Mohammad Karimi
  • Mahdi Koolivand Salooki
  • Mohammad Ali Semsarzadeh
Original Paper


The design of highly CO2-selective membranes by incorporating low amounts (0.25–0.75 wt%) of functionalized graphene oxide (F-GO) nanosheets (polyethylene glycol functionalized and aminated GOs) into an Ultem® 1000 polyetherimide (PEI) is presented. Structural and morphological analysis of the membranes by infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and scanning electron microscopy revealed strong interfacial interactions between the F-GO nanosheets and PEI. The CO2/CH4 separation performance of the membranes was discussed in terms of filler-polymer interfacial interactions and free volume characteristics. The origins of free volume are proposed to be different for GO/PEI and F-GO/PEI membranes: free volume is mainly located at the GO-PEI interface of the GO/PEI membranes while distributed within interphase regions formed around the F-GO nanosheets in the F-GO/PEI ones. These different free volume localizations resulted in distinct gas separation properties of the membranes. The membranes containing aminated-GO showed outstanding CO2/CH4 selectivities up to 142, due to the activation of multi-permselectivity mechanism in the PEI membrane by addition of the aminated nanosheets. The promising potential of F-GOs in CO2 removal is highlighted by comparing the CO2/CH4 separation performance of the F-GO/PEI membranes with that of other nanocomposites of PEI.


Nanocomposite membrane Graphene oxide Gas selectivity Multi-permselectivity 



Partial financial support from the Iranian Nano-technology Initiative is gratefully appreciated.

Supplementary material

10965_2014_599_MOESM1_ESM.pdf (387 kb)
ESM 1 (PDF 386 kb)


  1. 1.
    Du N, Dal-Cin MM, Robertson GP, Guiver MD (2012) Decarboxylation-induced cross-linking of Polymers of Intrinsic Microporosity (Pims) for membrane gas separation†. Macromolecules 45(12):5134–5139. doi: 10.1021/ma300751s CrossRefGoogle Scholar
  2. 2.
    Lu W, Yuan D, Sculley J, Zhao D, Krishna R, Zhou H-C (2011) Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J Am Chem Soc 133(45):18126–18129. doi: 10.1021/ja2087773
  3. 3.
    Zhao J, Wang Z, Wang J, Wang S (2006) Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization. J Membr Sci 283(1–2):346–356. doi: 10.1016/j.memsci.2006.07.004
  4. 4.
    Sharif A, Koolivand H, Khanbabaie G, Hemmati M, Aalaie J, Kashani MR, Gheshlaghi A (2012) Improvement of CO2/CH4 Separation Characteristics of Polyethersulfone by Modifying with Polydimethylsiloxane and Nano-Silica. J Polym Res 19 (7). doi: 10.1007/s10965-012-9916-3
  5. 5.
    Jin Y, Voss BA, Jin A, Long H, Noble RD, Zhang W (2011) Highly CO2-selective organic molecular cages: what determines the CO2 selectivity. J Am Chem Soc 133(17):6650–6658. doi: 10.1021/ja110846c
  6. 6.
    Mi Y, Hirose T (1996) Molecular design of high-performance polyimide membranes for gas separations. J Polym Res 3(1):11–19. doi: 10.1007/BF01493376 CrossRefGoogle Scholar
  7. 7.
    Li S, Wang Z, Yu X, Wang J, Wang S (2012) High-performance membranes with multi-permselectivity for CO2 separation. Adv Mater (Weinheim, Ger) 24(24):3196–3200. doi: 10.1002/adma.201200638
  8. 8.
    Lin H, Freeman BD (2006) Gas permeation and diffusion in cross-linked poly(ethylene glycol diacrylate). Macromolecules 39(10):3568–3580. doi: 10.1021/ma051686o CrossRefGoogle Scholar
  9. 9.
    Zaman I, Manshoor B, Khalid A, Araby S (2014) From clay to graphene for polymer nanocomposites—a survey. J Polym Res 21(5):1–11CrossRefGoogle Scholar
  10. 10.
    Park O-K, Hwang J-Y, Goh M, Lee JH, Ku B-C, You N-H (2013) Mechanically strong and multifunctional polyimide nanocomposites using Amimophenyl functionalized graphene nanosheets. Macromolecules 46(9):3505–3511. doi: 10.1021/ma400185j CrossRefGoogle Scholar
  11. 11.
    Zhang L-B, Wang J-Q, Wang H-G, Xu Y, Wang Z-F, Li Z-P, Mi Y-J, Yang S-R (2012) Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites. Compos Part A 43(9):1537–1545. doi: 10.1016/j.compositesa.2012.03.026 CrossRefGoogle Scholar
  12. 12.
    Li H, Wu S, Wu J, Huang G (2014) Enhanced electrical conductivity and mechanical property of Sbs/graphene nanocomposite. J Polym Res 21(5):1–8CrossRefGoogle Scholar
  13. 13.
    Shen X-J, Pei X-Q, Fu S-Y, Friedrich K (2013) Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content. Polymer 54(3):1234–1242. doi: 10.1016/j.polymer.2012.12.064 CrossRefGoogle Scholar
  14. 14.
    Lv W, You C-H, Wu S, Li B, Zhu Z-P, Wang M, Yang Q-H, Kang F (2012) Ph-mediated fine-tuning of optical properties of graphene oxide membranes. Carbon 50(9):3233–3239. doi: 10.1016/j.carbon.2011.11.016 CrossRefGoogle Scholar
  15. 15.
    Zhao H, Wu L, Zhou Z, Zhang L, Chen H (2013) Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide. Phys Chem Chem Phys 15(23):9084–9092. doi: 10.1039/c3cp50955a CrossRefGoogle Scholar
  16. 16.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. doi: 10.1016/j.carbon.2007.02.034 CrossRefGoogle Scholar
  17. 17.
    Zhang S, Xiong P, Yang X, Wang X (2011) Novel peg functionalized graphene nanosheets: enhancement of dispersibility and thermal stability. Nanoscale 3(5):2169–2174. doi: 10.1039/c0nr00923g CrossRefGoogle Scholar
  18. 18.
    Shen J, Huang W, Wu L, Hu Y, Ye M (2007) Study on amino-functionalized multiwalled carbon nanotubes. Mater Sci Eng A 464(1–2):151–156. doi: 10.1016/j.msea.2007.02.091 CrossRefGoogle Scholar
  19. 19.
    Hu Y, Shen J, Li N, Shi M, Ma H, Yan B, Wang W, Huang W, Ye M (2010) Amino-functionalization of graphene sheets and the fabrication of their nanocomposites. Polym Compos 31(12):1987–1994. doi: 10.1002/pc.20984 CrossRefGoogle Scholar
  20. 20.
    Semsarzadeh MA, Ghalei B (2012) Characterization and gas permeability of polyurethane and polyvinyl acetate blend membranes with polyethylene oxide–polypropylene oxide block copolymer. J Membr Sci 401–402:97–108. doi: 10.1016/j.memsci.2012.01.035 CrossRefGoogle Scholar
  21. 21.
    Semsarzadeh MA, Ghalei B (2013) Preparation, characterization and gas permeation properties of polyurethane–silica/polyvinyl alcohol mixed matrix membranes. J Membr Sci 432:115–125. doi: 10.1016/j.memsci.2013.01.005 CrossRefGoogle Scholar
  22. 22.
    Park H (2004) Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes. J Membr Sci 229(1–2):117–127. doi: 10.1016/j.memsci.2003.10.023 CrossRefGoogle Scholar
  23. 23.
    Kim H, Kobayashi S, AbdurRahim MA, Zhang MJ, Khusainova A, Hillmyer MA, Abdala AA, Macosko CW (2011) Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer 52(8):1837–1846. doi: 10.1016/j.polymer.2011.02.017 CrossRefGoogle Scholar
  24. 24.
    Wang Y, Shi Z, Yin J (2011) Kevlar oligomer functionalized graphene for polymer composites. Polymer 52(16):3661–3670. doi: 10.1016/j.polymer.2011.06.012 CrossRefGoogle Scholar
  25. 25.
    Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52(18):4001–4010. doi: 10.1016/j.polymer.2011.06.045 CrossRefGoogle Scholar
  26. 26.
    Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18(11):2740–2749. doi: 10.1021/cm060258+ CrossRefGoogle Scholar
  27. 27.
    Pechar, W. T (2004) Fabrication and characterization of polyimide-based mixed matrix membranes for gas separations Virginia Polytechnic and State University,Google Scholar
  28. 28.
    Becker KH, Schmidt HW (1992) Para-linked aromatic poly(amic ethyl esters): precursors to Rodlike aromatic polyimides. 1. Synthesis and imidization study. Macromolecules 25(25):6784–6790. doi: 10.1021/ma00051a010 CrossRefGoogle Scholar
  29. 29.
    Sarwar MI, Zulfiqar S, Ahmad Z (2008) Polyamide–Silica Nanocomposites: Mechanical, Morphological and Thermomechanical Investigations. Polym Int 57(2):292–296. doi: 10.1002/pi.2343 CrossRefGoogle Scholar
  30. 30.
    Mortezaei M, Famili MHN, Kokabi M (2010) Influence of the particle size on the viscoelastic glass transition of silica-filled polystyrene. J Appl Polym Sci 115(2):969–975. doi: 10.1002/app.31048 CrossRefGoogle Scholar
  31. 31.
    Aboutalebi SH, Gudarzi MM, Zheng QB, Kim JK (2011) Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv Funct Mater 21(15):2978–2988CrossRefGoogle Scholar
  32. 32.
    Gudarzi MM, Sharif F (2011) Self assembly of graphene oxide at the liquid-liquid interface: a new route to the fabrication of graphene based composites. Soft Matter 7(7):3432–3440. doi: 10.1039/C0SM01311K CrossRefGoogle Scholar
  33. 33.
    Xia J, Liu S, Pallathadka PK, Chng ML, Chung T-S (2010) Structural determination of Extem Xh 1015 and its gas permeability comparison with polysulfone and Ultem via molecular simulation. Ind Eng Chem Res 49(23):12014–12021. doi: 10.1021/ie901906p CrossRefGoogle Scholar
  34. 34.
    Mulder M (1996) Basic principles of membrane technology second edition. Kluwer Academic PubGoogle Scholar
  35. 35.
    Chang KS, Tung CC, Wang KS, Tung KL (2009) Free volume analysis and gas transport mechanisms of aromatic polyimide membranes: a molecular simulation study. J Phys Chem B 113(29):9821–9830. doi: 10.1021/jp903551h CrossRefGoogle Scholar
  36. 36.
    Zhang H, Wang S, Weber SG (2013) Morphology and free volume of nanocomposite Teflon Af 2400 films and their relationship to transport behavior. J Membr Sci 443:115–123. doi: 10.1016/j.memsci.2013.04.064 CrossRefGoogle Scholar
  37. 37.
    Yampolskii Y (2012) Polymeric gas separation membranes. Macromolecules 45(8):3298–3311. doi: 10.1021/ma300213b CrossRefGoogle Scholar
  38. 38.
    Cong H, Hu X, Radosz M, Shen Y (2007) Brominated poly(2,6-diphenyl-1,4-phenylene oxide) and its silica nanocomposite membranes for gas separation. Ind Eng Chem Res 46(8):2567–2575. doi: 10.1021/ie061494x CrossRefGoogle Scholar
  39. 39.
    Sanders DF, Smith ZP, Ribeiro CP, Guo R, McGrath JE, Paul DR, Freeman BD (2012) Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (Hab) and 2,2′-Bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6fda). J Membr Sci 409–410:232–241. doi: 10.1016/j.memsci.2012.03.060 CrossRefGoogle Scholar
  40. 40.
    Martinache JD, Royer JR, Siripurapu S, Hénon FE, Genzer J, Khan SA, Carbonell RG (2001) Processing of polyamide 11 with supercritical carbon dioxide. Ind Eng Chem Res 40(23):5570–5577. doi: 10.1021/ie010410b CrossRefGoogle Scholar
  41. 41.
    Hashemifard SA, Ismail AF, Matsuura T (2011) Effects of montmorillonite nano-clay fillers on Pei mixed matrix membrane for Co2 removal. Chem Eng J 170(1):316–325. doi: 10.1016/j.cej.2011.03.063 CrossRefGoogle Scholar
  42. 42.
    Hashemifard SA, Ismail AF, Matsuura T (2011) Mixed matrix membrane incorporated with large pore size halloysite nanotubes (Hnt) as filler for gas separation: experimental. J Colloid Interface Sci 359(2):359–370. doi: 10.1016/j.jcis.2011.03.077 CrossRefGoogle Scholar
  43. 43.
    Hillock AMW, Miller SJ, Koros WJ (2008) Crosslinked mixed matrix membranes for the purification of natural gas: effects of sieve surface modification. J Membr Sci 314(1–2):193–199. doi: 10.1016/j.memsci.2008.01.046 CrossRefGoogle Scholar
  44. 44.
    Vaughn JT, Koros WJ, Johnson JR, Karvan O (2012) Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid Gas separations. J Membr Sci 401–402:163–174. doi: 10.1016/j.memsci.2012.01.047 CrossRefGoogle Scholar
  45. 45.
    Kraftschik B, Koros WJ, Johnson JR, Karvan O (2013) Dense film polyimide membranes for aggressive sour gas feed separations. J Membr Sci 428:608–619. doi: 10.1016/j.memsci.2012.10.025 CrossRefGoogle Scholar
  46. 46.
    Wind JD, Paul DR, Koros WJ (2004) Natural gas permeation in polyimide membranes. J Membr Sci 228(2):227–236. doi: 10.1016/j.memsci.2003.10.011 CrossRefGoogle Scholar
  47. 47.
    Dhara MG, Banerjee S (2010) Fluorinated high-performance polymers: poly(arylene ether)S and aromatic polyimides containing trifluoromethyl groups. Prog Polym Sci 35(8):1022–1077. doi: 10.1016/j.progpolymsci.2010.04.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Hadis Koolivand
    • 1
  • Alireza Sharif
    • 1
    Email author
  • Mehdi Razzaghi Kashani
    • 1
  • Mohammad Karimi
    • 2
  • Mahdi Koolivand Salooki
    • 3
  • Mohammad Ali Semsarzadeh
    • 1
  1. 1.Department of Polymer Engineering, Faculty of Chemical EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Department of Textile EngineeringAmirkabir University of TechnologyTehranIran
  3. 3.Department of Chemical EngineeringTehran UniversityTehranIran

Personalised recommendations