Skip to main content

Synthesis and characterization of thermosensitive poly(N-isopropylacrylamide-co-hydroxyethylacrylamide) microgels as potential carriers for drug delivery

Abstract

Thermoresponsive colloidal microgels were prepared by precipitation copolymerization of N-isopropylacrylamide (NIPAM) and N-hydroxyethylacrylamide (HEAM) with various concentrations of a cross-linker in the presence of an anionic surfactant, sodium dodecylsulphate (SDS). The volume phase transition temperature (VPTT) of the prepared microgels was studied by dynamic light scattering (DLS), ultraviolet–visible spectroscopy (UV–vis) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. In addition, atomic force microscopy (AFM) was used to characterize the polydispersity and morphology of the microgels. Results indicated that poly(NIPAM-co-HEAM) microgels are spherical and monodisperse. VPTTs of microgels determined by DLS and UV–vis methods are almost the same and very close to the human body temperature, presenting the microgels as candidates for biomedical application. The temperature at which the phase transition occurred is nearly independent of the cross-linking density, whereas the transition range is deeply influenced by temperature. Also, the SDS concentration was increased to decrease the average hydrodynamic size of the microgels, due to the electrostatic repulsion between the charged particles during the polymerization process. 1H-NMR spectra of the microgels show a decrease in peak intensity with an increased temperature due to a reduction in molecular mobility of the polymer segments. Release rates of propranolol from microgels are deeply influenced by temperature; below the VPTT at 25 °C, the drug is rapidly released at a rate comparable to that of a free drug, whereas above the VPTT (37 and 42 °C), a fraction of the drug is mechanically expulsed in the first five min, followed by a prolonged release.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Staudinger H, Huseman E (1935) One highly polymeric compounds, 116(th) announcement - on the limite swellable poly-styrene. Ber Dtsch Chem Ges (A and B Series) 68:1618–1634

    Article  Google Scholar 

  2. Pelton RH, Chibante P (1986) Preparation of aqueous lattices with N-isopropylacrylamide. Coll Surf 20:247–256

    CAS  Article  Google Scholar 

  3. Schild HG, Tirrell DA (1991) Interaction of Poly(N-isopropylacrylamide) with sodium n-alkyl sulfates in aqueous solution. Langmuir 7:665–671

    CAS  Article  Google Scholar 

  4. Shibayama M, Tanaka T (1995) Small-angle neutron scattering study on weakly charged poly(N-isopropyl acrylamide-co-acrylic acid) copolymer solutions. J Chem Phys 102:9392–9400

    CAS  Article  Google Scholar 

  5. Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc Faraday Trans 92:5013–5016

    CAS  Article  Google Scholar 

  6. Matzelle T, Reichelt R (2008) Review: hydro-, micro- and nanogels studied by complementary measurements based on SEM and SFM. Acta Microsc 17:45–61

    CAS  Google Scholar 

  7. Zhao C, Gao X, He P, Xiao C, Zhuang X, Chen X (2011) Facile synthesis of thermo- and pH-responsive biodegradable microgels. Colloid Polym Sci 289:447–451

    CAS  Article  Google Scholar 

  8. Saunders BR, Laajam N, Daly E, Teow S, Hu X, Stepto R (2009) Microgels: from responsive polymer colloids to biomaterials. Adv Coll Interface Sci 147–148:251–262

    Article  Google Scholar 

  9. Klinger D, Landfester K (2012) Stimuli-responsive microgels for the loading and release of functional compounds: fundamental concepts and applications. Polymer 53:5209–5231

    CAS  Article  Google Scholar 

  10. Hu Z, Chen Y, Wang C, Zheng Y, Li Y (1998) Polymer gels with engineered environmentally responsive surface. Nature 393:149–152

    CAS  Article  Google Scholar 

  11. Yang CC, Tian YQ, Jen AK-Y, Chen WC (2006) New environmental-responsive fluorescent NIPAA copolymer and its application on DNA sensing. J Polym Sci Polym Chem 44:5495–5504

    CAS  Article  Google Scholar 

  12. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Del Rev 54:3–12

    CAS  Article  Google Scholar 

  13. Zhang JT, Huang SW, Cheng SX, Zhuo RX (2004) Preparation and properties of poly(N-isopropylacrylamide)/poly(N-isopropylacrylamide) interpenetrating polymer networks for drug delivery. J Polym Sci Polym Chem 42:1249–1254

    CAS  Article  Google Scholar 

  14. Ichikawa H, Fukumori Y (2000) A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J Control Rel 63:107–119

    CAS  Article  Google Scholar 

  15. Murthy N, Thng YX, Schuck S, Xu MC, Fréchet JMJ (2002) A novel strategy for encapsulation and release of proteins: hydrogels and microgels aith acid-labile acetal cross-linkers. J Am Chem Soc 124:12398–12399

    CAS  Article  Google Scholar 

  16. Aerry S, De A, Kumar A, Saxena A, Majumdar DK, Mozumdar S (2013) Synthesis and characterization of thermoresponsive copolymers for drug delivery. J Biomed Mater Res A 101:2015–2026

    Article  Google Scholar 

  17. Kawaguchi H, Fujimoto K (1998) Smart latexes for bioseparation. Bioseparation 7:253–258

    CAS  Article  Google Scholar 

  18. Carter S, Rimmer S, Rutkaite R, Swanson L, Fairclough JPA, Sturdy A, Webb M (2006) Highly branched poly(N-isopropylacrylamide) for use in protein purification. Biomacromolecules 7:1124–1130

    CAS  Article  Google Scholar 

  19. Bergbreiter DE, Case BL, Liu YS, Caraway JW (1998) Poly(N-isopropylacrylamide) soluble polymer supports in catalysis and synthesis. Macromolecules 31:6053–6062

    CAS  Article  Google Scholar 

  20. Bergbreiter DE, Liu YS, Osburn PL (1998) Thermomorphic Rhodium(I) and Palladium(0) catalysts. J Am Chem Soc 120:4250–4251

    CAS  Article  Google Scholar 

  21. Debord JD, Eustis S, Debord SB, Lofye MT, Lyon LA (2002) Colloidal crystals from soft hydrogel nanoparticles. Adv Mater 14:658–662

    CAS  Article  Google Scholar 

  22. Gao J, Hu Z (2002) Optical properties of N-isopropylacrylamide microgel spheres in water. Langmuir 18:1360–1367

    CAS  Article  Google Scholar 

  23. Wu C, Zhou SQ (1997) Volume phase transition of swollen gels: discontinous or continous? Macromolecules 30:574–576

    CAS  Article  Google Scholar 

  24. Woodward NC, Chowhry BZ, Leharne SA, Snowden MJ (2000) The interaction of sodium dodecyl sulphate with colloidal microgel particles. Eur Polym J 36:1355–1364

    CAS  Article  Google Scholar 

  25. Benee LS, Snowden MJ, Chowdhry BZ (2002) Novel gelling behaviour of poly(N-isopropylacrylamide-co-vinyl laurate) microgel dispersions. Langmuir 18:6025–6030

    CAS  Article  Google Scholar 

  26. Petrusic S, Jovancic P, Lewandowski M, Giraud S, Bugarski B, Djonlagic J, Koncar V (2012) Synthesis, characterization and drug release properties of thermosensitive poly(N-isopropylacrylamide) microgels. J Polym Res 19:9979–9989

    Article  Google Scholar 

  27. Snowden MJ, Chowdhry BZ (1995) Small sponges with big appetites. Chem Br 31:943–945

    CAS  Google Scholar 

  28. Clinton DJ, Lyon LA (2003) Shell-restricted swelling and core compression in poly(N-isopropylacrylamide) core-shell microgels. Macromolecules 36:1988–1993

    Article  Google Scholar 

  29. Ma X, Xing Y (2006) The preparation and characterization of co-polymer microgels with transition temperature at or near physiological values. Polym Bull 57:207–217

    CAS  Article  Google Scholar 

  30. Ma X, Tang X (2006) Flocculation behaviour of temperature-sensitive poly(N-isopropylacrylamide) microgels containing polar side chains with –OH groups. J Colloid Interf Sci 299:217–224

    CAS  Article  Google Scholar 

  31. Naeem H, Farooqi ZH, Shah LA, Siddiq M (2012) Synthesis and characterization of poly(NIPAM-AA-AAm) microgels for tuning of optical properties of silver nanoparticles. J Polym Res 19:9950–9959

    Article  Google Scholar 

  32. Çiçek H, Tuncel A (1998) Preparation and characterization of thermoresponsive isopropylacrylamide-hydroxyethylmethacrylate copolymer gels. J Polymer Sci Polym Chem 36:527–541

    Article  Google Scholar 

  33. Kettel MJ, Dierkes F, Schaefer K, Möller M, Pich A (2011) Aqueous nanogels modified with cyclodextrin. Polymer 52:1917–1924

    CAS  Article  Google Scholar 

  34. Pich A, Zhang F, Shen L, Berger S, Ornatsky O, Baranov V, Winnik MA (2008) Biocompatible hybrid nanogels. Small 4:2171–2175

    CAS  Article  Google Scholar 

  35. Berger S, Ornatsky O, Baranov V, Winnik MA, Pich A (2010) Hybrid nanogels by encapsulation of lanthanide-doped LaF3 nanoparticles as elemental tags for detection by atomic mass spectrometry. J Mater Chem 20:5141–5150

    CAS  Article  Google Scholar 

  36. Fundueanu G, Constantin M, Asmarandei I, Bucatariu S, Harabagiu V, Ascenzi P, Simionescu BC (2013) Poly(N-isopropylacrylamide-co-hydroxyethylacrylamide) thermosensitive microspheres: the size of microgels dictates the pulsatile release mechanism. Eur J Pharm Biopharm 85:614–623

    CAS  Article  Google Scholar 

  37. Byrne ME, Oral E, Hilt JZ, Peppas NA (2002) Networks for recognition of biomolecules: molecular imprinting and micropatterning poly(ethylene glycol)-containing films. Polym Adv Technol 13:798–816

    CAS  Article  Google Scholar 

  38. Kratz K, Lapp A, Eimer W, Hellweg T (2002) Volume transition and structure of triethyleneglycol dimethacrylate, ethylenglykol dimethacrylate, and N, N’-methylene bis-acrylamide cross-linked poly(N-isopropyl acrylamide) microgels: a small angle neutron and dynamic light scattering study. Coll Surf A 197:55–67

    CAS  Article  Google Scholar 

  39. Zhang XZ, Zhou RX, Cui JZ, Zhang JT (2002) A novel thermo-responsive drug delivery system with positive controlled release. Int J Pharm 235:43–50

    CAS  Article  Google Scholar 

  40. Fadida T, Lellouche JP (2012) Preparation and characterization of composites built of poly(N-benzophenoyl methacrylamide-co-N-hydroxyethyl acrylamide) cores and silica raspberry-like shells with dual orthogonal functionality. J Colloid Interf Sci 386:167–173

    CAS  Article  Google Scholar 

  41. International Standard ISO 22412 (2008) Particle Size Analysis-Dynamic Light Scattering. International Organization for Standardization (ISO)

  42. Inomata H, Wada N, Yagi Y, Goto S, Saito S (1995) Swelling behaviours of N-alkylacrylamide gels in water: effects of copolymerization and crosslinking density. Polymer 36:875–877

    CAS  Article  Google Scholar 

  43. Crowther HM, Vincent B (1998) Swelling behaviour of poly-N-isopropylacrylamide microgel particles in alcoholic solutions. Colloid Polym Sci 276:46–51

    CAS  Article  Google Scholar 

  44. Daly E, Saunders BR (2000) Temperature-dependent electrophoretic mobility and hydrodynamic radius measurements of poly(N-isopropylacrylamide) microgel particles: structural insights. Phys Chem Chem Phys 2:3187–3193

    CAS  Article  Google Scholar 

  45. Guillermo A, Cohen Addad JP, Bazile JP, Duracher D, Elaissari A, Pichot C (2000) NMR investigations into heterogenous structures of thermosensitive microgel particles. J Polym Sci Pol Phys 38:889–898

    CAS  Article  Google Scholar 

  46. McPhee W, Tam KC, Pelton RH (1993) Poly(N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate. J Colloid Interf Sci 156:24–30

    CAS  Article  Google Scholar 

  47. Kratz K, Hellweg T, Eimer W (2001) Structural changes in PNIPAM microgel particles as seen by SANS, DLS and EM techniques. Polymer 42:6631–6639

    CAS  Article  Google Scholar 

  48. Mears SJ, Deng Y, Cosgrove T, Pelton R (1997) Structure of sodium dodecyl sulphate bound to a poly(NIPAM) microgel particle. Langmuir 13:1901–1906

    CAS  Article  Google Scholar 

  49. Pelton RH, Pelton HM, Morphesis A, Rowell RL (1989) Particle sizes and electrophoretic mobilities of poly(N-isopropylacrylamide) latex. Langmuir 5:816–818

    CAS  Article  Google Scholar 

  50. Andersson M, Maunu SL (2006) Structural studies of poly(N-isopropylacrylamide) microgels: effect of SDS surfactant concentration in the microgel synthesis. J Polym Sci Pol Phys 44:3305–3314

    CAS  Article  Google Scholar 

  51. Du H, Wickramasinghe R, Qian X (2010) Effects of salt on the lower critical solution temperature on poly(N-isopropylacrylamide). J Phys Chem B 114:16594–16604

    CAS  Article  Google Scholar 

  52. Dhanya S, Bahadur D, Kundu GC, Srivastava R (2013) Maleic acid incorporated poly(N-isopropylacrylamide) polymer nanogels for dual-responsive delivery of doxorubicin hydrochloride. Eur Polym J 49:22–23

    CAS  Article  Google Scholar 

  53. Caliceti P, Salmaso S, Lante A, Yoshida M, Katakai R, Martellini F et al (2001) Controlled release of biomolecules from temperature-sensitive hydrogels prepared by radiation polymerisation. J Control Release 75:173–181

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The research has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 264115 – STREAM.

This work was also supported by a grant from the Romanian National Authority for Scientific Research, CNCS—UEFISCDI, project number PN-II-ID-PCCE-2011-2-0028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marieta Constantin.

Additional information

Paper dedicated to the 65th anniversary of “Petru Poni” Institute of Macromolecular Chemistry of the Romanian Academy, Iasi, Romania.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

1H-NMR spectrum of poly(NIPAM-co-HEAM) microgels (sample M1.9S1.5 in Table 1) (TIFF 391 kb)

High Resolution Image (GIF 137 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bucatariu, S., Fundueanu, G., Prisacaru, I. et al. Synthesis and characterization of thermosensitive poly(N-isopropylacrylamide-co-hydroxyethylacrylamide) microgels as potential carriers for drug delivery. J Polym Res 21, 580 (2014). https://doi.org/10.1007/s10965-014-0580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0580-7

Keywords

  • poly(N-isopropylacrylamide)
  • Microgel
  • Smart network
  • Drug delivery