Staudinger H, Huseman E (1935) One highly polymeric compounds, 116(th) announcement - on the limite swellable poly-styrene. Ber Dtsch Chem Ges (A and B Series) 68:1618–1634
Article
Google Scholar
Pelton RH, Chibante P (1986) Preparation of aqueous lattices with N-isopropylacrylamide. Coll Surf 20:247–256
CAS
Article
Google Scholar
Schild HG, Tirrell DA (1991) Interaction of Poly(N-isopropylacrylamide) with sodium n-alkyl sulfates in aqueous solution. Langmuir 7:665–671
CAS
Article
Google Scholar
Shibayama M, Tanaka T (1995) Small-angle neutron scattering study on weakly charged poly(N-isopropyl acrylamide-co-acrylic acid) copolymer solutions. J Chem Phys 102:9392–9400
CAS
Article
Google Scholar
Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc Faraday Trans 92:5013–5016
CAS
Article
Google Scholar
Matzelle T, Reichelt R (2008) Review: hydro-, micro- and nanogels studied by complementary measurements based on SEM and SFM. Acta Microsc 17:45–61
CAS
Google Scholar
Zhao C, Gao X, He P, Xiao C, Zhuang X, Chen X (2011) Facile synthesis of thermo- and pH-responsive biodegradable microgels. Colloid Polym Sci 289:447–451
CAS
Article
Google Scholar
Saunders BR, Laajam N, Daly E, Teow S, Hu X, Stepto R (2009) Microgels: from responsive polymer colloids to biomaterials. Adv Coll Interface Sci 147–148:251–262
Article
Google Scholar
Klinger D, Landfester K (2012) Stimuli-responsive microgels for the loading and release of functional compounds: fundamental concepts and applications. Polymer 53:5209–5231
CAS
Article
Google Scholar
Hu Z, Chen Y, Wang C, Zheng Y, Li Y (1998) Polymer gels with engineered environmentally responsive surface. Nature 393:149–152
CAS
Article
Google Scholar
Yang CC, Tian YQ, Jen AK-Y, Chen WC (2006) New environmental-responsive fluorescent NIPAA copolymer and its application on DNA sensing. J Polym Sci Polym Chem 44:5495–5504
CAS
Article
Google Scholar
Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Del Rev 54:3–12
CAS
Article
Google Scholar
Zhang JT, Huang SW, Cheng SX, Zhuo RX (2004) Preparation and properties of poly(N-isopropylacrylamide)/poly(N-isopropylacrylamide) interpenetrating polymer networks for drug delivery. J Polym Sci Polym Chem 42:1249–1254
CAS
Article
Google Scholar
Ichikawa H, Fukumori Y (2000) A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J Control Rel 63:107–119
CAS
Article
Google Scholar
Murthy N, Thng YX, Schuck S, Xu MC, Fréchet JMJ (2002) A novel strategy for encapsulation and release of proteins: hydrogels and microgels aith acid-labile acetal cross-linkers. J Am Chem Soc 124:12398–12399
CAS
Article
Google Scholar
Aerry S, De A, Kumar A, Saxena A, Majumdar DK, Mozumdar S (2013) Synthesis and characterization of thermoresponsive copolymers for drug delivery. J Biomed Mater Res A 101:2015–2026
Article
Google Scholar
Kawaguchi H, Fujimoto K (1998) Smart latexes for bioseparation. Bioseparation 7:253–258
CAS
Article
Google Scholar
Carter S, Rimmer S, Rutkaite R, Swanson L, Fairclough JPA, Sturdy A, Webb M (2006) Highly branched poly(N-isopropylacrylamide) for use in protein purification. Biomacromolecules 7:1124–1130
CAS
Article
Google Scholar
Bergbreiter DE, Case BL, Liu YS, Caraway JW (1998) Poly(N-isopropylacrylamide) soluble polymer supports in catalysis and synthesis. Macromolecules 31:6053–6062
CAS
Article
Google Scholar
Bergbreiter DE, Liu YS, Osburn PL (1998) Thermomorphic Rhodium(I) and Palladium(0) catalysts. J Am Chem Soc 120:4250–4251
CAS
Article
Google Scholar
Debord JD, Eustis S, Debord SB, Lofye MT, Lyon LA (2002) Colloidal crystals from soft hydrogel nanoparticles. Adv Mater 14:658–662
CAS
Article
Google Scholar
Gao J, Hu Z (2002) Optical properties of N-isopropylacrylamide microgel spheres in water. Langmuir 18:1360–1367
CAS
Article
Google Scholar
Wu C, Zhou SQ (1997) Volume phase transition of swollen gels: discontinous or continous? Macromolecules 30:574–576
CAS
Article
Google Scholar
Woodward NC, Chowhry BZ, Leharne SA, Snowden MJ (2000) The interaction of sodium dodecyl sulphate with colloidal microgel particles. Eur Polym J 36:1355–1364
CAS
Article
Google Scholar
Benee LS, Snowden MJ, Chowdhry BZ (2002) Novel gelling behaviour of poly(N-isopropylacrylamide-co-vinyl laurate) microgel dispersions. Langmuir 18:6025–6030
CAS
Article
Google Scholar
Petrusic S, Jovancic P, Lewandowski M, Giraud S, Bugarski B, Djonlagic J, Koncar V (2012) Synthesis, characterization and drug release properties of thermosensitive poly(N-isopropylacrylamide) microgels. J Polym Res 19:9979–9989
Article
Google Scholar
Snowden MJ, Chowdhry BZ (1995) Small sponges with big appetites. Chem Br 31:943–945
CAS
Google Scholar
Clinton DJ, Lyon LA (2003) Shell-restricted swelling and core compression in poly(N-isopropylacrylamide) core-shell microgels. Macromolecules 36:1988–1993
Article
Google Scholar
Ma X, Xing Y (2006) The preparation and characterization of co-polymer microgels with transition temperature at or near physiological values. Polym Bull 57:207–217
CAS
Article
Google Scholar
Ma X, Tang X (2006) Flocculation behaviour of temperature-sensitive poly(N-isopropylacrylamide) microgels containing polar side chains with –OH groups. J Colloid Interf Sci 299:217–224
CAS
Article
Google Scholar
Naeem H, Farooqi ZH, Shah LA, Siddiq M (2012) Synthesis and characterization of poly(NIPAM-AA-AAm) microgels for tuning of optical properties of silver nanoparticles. J Polym Res 19:9950–9959
Article
Google Scholar
Çiçek H, Tuncel A (1998) Preparation and characterization of thermoresponsive isopropylacrylamide-hydroxyethylmethacrylate copolymer gels. J Polymer Sci Polym Chem 36:527–541
Article
Google Scholar
Kettel MJ, Dierkes F, Schaefer K, Möller M, Pich A (2011) Aqueous nanogels modified with cyclodextrin. Polymer 52:1917–1924
CAS
Article
Google Scholar
Pich A, Zhang F, Shen L, Berger S, Ornatsky O, Baranov V, Winnik MA (2008) Biocompatible hybrid nanogels. Small 4:2171–2175
CAS
Article
Google Scholar
Berger S, Ornatsky O, Baranov V, Winnik MA, Pich A (2010) Hybrid nanogels by encapsulation of lanthanide-doped LaF3 nanoparticles as elemental tags for detection by atomic mass spectrometry. J Mater Chem 20:5141–5150
CAS
Article
Google Scholar
Fundueanu G, Constantin M, Asmarandei I, Bucatariu S, Harabagiu V, Ascenzi P, Simionescu BC (2013) Poly(N-isopropylacrylamide-co-hydroxyethylacrylamide) thermosensitive microspheres: the size of microgels dictates the pulsatile release mechanism. Eur J Pharm Biopharm 85:614–623
CAS
Article
Google Scholar
Byrne ME, Oral E, Hilt JZ, Peppas NA (2002) Networks for recognition of biomolecules: molecular imprinting and micropatterning poly(ethylene glycol)-containing films. Polym Adv Technol 13:798–816
CAS
Article
Google Scholar
Kratz K, Lapp A, Eimer W, Hellweg T (2002) Volume transition and structure of triethyleneglycol dimethacrylate, ethylenglykol dimethacrylate, and N, N’-methylene bis-acrylamide cross-linked poly(N-isopropyl acrylamide) microgels: a small angle neutron and dynamic light scattering study. Coll Surf A 197:55–67
CAS
Article
Google Scholar
Zhang XZ, Zhou RX, Cui JZ, Zhang JT (2002) A novel thermo-responsive drug delivery system with positive controlled release. Int J Pharm 235:43–50
CAS
Article
Google Scholar
Fadida T, Lellouche JP (2012) Preparation and characterization of composites built of poly(N-benzophenoyl methacrylamide-co-N-hydroxyethyl acrylamide) cores and silica raspberry-like shells with dual orthogonal functionality. J Colloid Interf Sci 386:167–173
CAS
Article
Google Scholar
International Standard ISO 22412 (2008) Particle Size Analysis-Dynamic Light Scattering. International Organization for Standardization (ISO)
Inomata H, Wada N, Yagi Y, Goto S, Saito S (1995) Swelling behaviours of N-alkylacrylamide gels in water: effects of copolymerization and crosslinking density. Polymer 36:875–877
CAS
Article
Google Scholar
Crowther HM, Vincent B (1998) Swelling behaviour of poly-N-isopropylacrylamide microgel particles in alcoholic solutions. Colloid Polym Sci 276:46–51
CAS
Article
Google Scholar
Daly E, Saunders BR (2000) Temperature-dependent electrophoretic mobility and hydrodynamic radius measurements of poly(N-isopropylacrylamide) microgel particles: structural insights. Phys Chem Chem Phys 2:3187–3193
CAS
Article
Google Scholar
Guillermo A, Cohen Addad JP, Bazile JP, Duracher D, Elaissari A, Pichot C (2000) NMR investigations into heterogenous structures of thermosensitive microgel particles. J Polym Sci Pol Phys 38:889–898
CAS
Article
Google Scholar
McPhee W, Tam KC, Pelton RH (1993) Poly(N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate. J Colloid Interf Sci 156:24–30
CAS
Article
Google Scholar
Kratz K, Hellweg T, Eimer W (2001) Structural changes in PNIPAM microgel particles as seen by SANS, DLS and EM techniques. Polymer 42:6631–6639
CAS
Article
Google Scholar
Mears SJ, Deng Y, Cosgrove T, Pelton R (1997) Structure of sodium dodecyl sulphate bound to a poly(NIPAM) microgel particle. Langmuir 13:1901–1906
CAS
Article
Google Scholar
Pelton RH, Pelton HM, Morphesis A, Rowell RL (1989) Particle sizes and electrophoretic mobilities of poly(N-isopropylacrylamide) latex. Langmuir 5:816–818
CAS
Article
Google Scholar
Andersson M, Maunu SL (2006) Structural studies of poly(N-isopropylacrylamide) microgels: effect of SDS surfactant concentration in the microgel synthesis. J Polym Sci Pol Phys 44:3305–3314
CAS
Article
Google Scholar
Du H, Wickramasinghe R, Qian X (2010) Effects of salt on the lower critical solution temperature on poly(N-isopropylacrylamide). J Phys Chem B 114:16594–16604
CAS
Article
Google Scholar
Dhanya S, Bahadur D, Kundu GC, Srivastava R (2013) Maleic acid incorporated poly(N-isopropylacrylamide) polymer nanogels for dual-responsive delivery of doxorubicin hydrochloride. Eur Polym J 49:22–23
CAS
Article
Google Scholar
Caliceti P, Salmaso S, Lante A, Yoshida M, Katakai R, Martellini F et al (2001) Controlled release of biomolecules from temperature-sensitive hydrogels prepared by radiation polymerisation. J Control Release 75:173–181
CAS
Article
Google Scholar