Skip to main content
Log in

Peculiarities of interactions between 6-aminophenalenone dye and polyurethane matrix

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Possibility for chemical interactions of 6-aminophenalenone dye with the components of reaction mixture at the polyurethane formation was shown by means of X-ray wide angle scattering, EPR and visible spectroscopy methods. This was also confirmed by IR-spectroscopy, identifying the products of the model reaction between 6-aminophenalenone and hexamethylene diisocyanate. Observed large Stokes shift gives prospects to use efficiently the polyurethane matrix with 6-aminophenalenone as an active element in dye lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh S, Kanetkar V, Sridhar G, Muthuswamy V, Raja K (2003) Solid-state polymeric dye lasers. J Lumin 101:285–291

    Article  CAS  Google Scholar 

  2. Duarte FJ (ed) (2009) Tunable laser applications, 2nd edn. CRC, New York

    Google Scholar 

  3. Bezrodnyi VI, Ishchenko AA (2001) High efficiency lasing of the dye-doped polymer laser with 1.06 μm pumping. Appl Phys B 73:283–285

    Article  CAS  Google Scholar 

  4. Costela A, Garcia-Moreno I, Sastre R (2003) Polymeric solid-state dye lasers: recent developments. Phys Chem Chem Phys 5:4745–4763

    Article  CAS  Google Scholar 

  5. Kranzelbinder G, Leising G (2000) Organic solid-state lasers. Rep Prog Phys 63:729–762

    Article  CAS  Google Scholar 

  6. Ishchenko AA, Grabchuk GP (2009) Physico-chemical problems of development of light energy photostable convertors based on dye-doped polymers. Theor Expert Chem 45:133–155, in Russian

    Google Scholar 

  7. Costela A, Garcia-Moreno I, Sastre R, Arbeloa F, Arbeloa I (2001) Photophysical and lasing properties of pyrromethene 567 dye in solid poly (trifluoromethyl methacrylate) matrices with different degrees of crosslinking. Phys B 73:19–24

    CAS  Google Scholar 

  8. Bezrodnyi VI, Bondar MV, Kozak GY, Przhonskaya OV, Tikhonov EA (1989) Dye-activated polymer media for frequency-tunable lasers (review). J Appl Spectrosc 50:441–455

    Article  Google Scholar 

  9. Liu M, Kira A (2000) Fabrication of J aggregate films in synthetic polyanion matrix and their chemochromism. Thin Solid Films 359:104–107

    Article  CAS  Google Scholar 

  10. de Barros RB, Ilharco LM (2001) The role of cellulose acetate as a matrix for aggregation of pseudoisocyanine iodide: absorption and emission studies. Spectrochim Acta A 57:1809–1817

    Article  Google Scholar 

  11. Tyurin OV, Dercov YM, Zhukov SO, Levitskaya TF, Gevelyuk SA, Doycho IK, Rysiakiewicz-Pasek E (2010) Aggregation of dyes in porous glass. Opt Appl 40:311–321

    CAS  Google Scholar 

  12. Vogel R, Harvey M, Edwards G, Meredith P, Heckenberg N, Trau M, Rubinsztein-Dunlop H (2002) Dimer-to-monomer transformation of rhodamine 6G in aqueous PEO-PPO-PEO block copolymer solutions. Macromolecules 35:2063–2070

    Article  CAS  Google Scholar 

  13. Nilsson D, Balslev S, Gregersen M, Kristensen A (2005) Microfabricated solid-state dye lasers based on a photodefinable polymer. Appl Opt 44:4965–4971

    Article  CAS  Google Scholar 

  14. Nilsson D, Balslev S, Kristensen A (2005) A microfluidic dye laser fabricated by nanoimprint lithography in a highly transparent and chemically resistant cyclo-olefin copolymer. J Micromech Microeng 15:296–300

    Article  CAS  Google Scholar 

  15. Lutz DR, Nelson KA, Gochanour CR, Fayer MD (1981) Electronic excited state energy transfer, trapping by dimers and fluorescence quenching in concentrated dye solutions: picosecond transient grating experiments. Chem Phys 58:325–334

    Article  CAS  Google Scholar 

  16. Yang Y, Qian G, Su D, Wang Z, Wang M (2005) Luminescence and laser performances of coumarin dyes doped in ORMOSILs. Mater Sci Eng B 119:192–195

    Article  Google Scholar 

  17. Huang J, Bekiari V, Lianos P, Couris S (1999) Study of poly (methyl methacrylate) thin films doped with laser dyes. J Lumin 81:285–291

    Article  CAS  Google Scholar 

  18. Terenin AN (1967) Photonics of dye molecules. Nauka, Leningrad, in Russian

    Google Scholar 

  19. Costela A, Garcia-Moreno I, Figuera J, Amat-Guerri F, Sastre R (1996) Solid-state dye lasers based on polymers incorporating covalently bonded modified rhodamine 6G. Appl Phys Lett 68:593–595

    Article  CAS  Google Scholar 

  20. Susdorf T, Ivarez M, Holzer W, Penzkofer A, Amat-Guerri F, Liras M, Costela A, Garcia-Moreno I, Sastre R (2005) Photophysical characterisation of some dipyrromethene dyes in ethyl acetate and covalently bound to poly (methyl methacrylate). Chem Phys 312:151–158

    Article  CAS  Google Scholar 

  21. Kuznetsova NA, Kaliya OL, Solodar SL (1985) The role of singlet oxygen in photodegradation of aminophenalenones. J Appl Spectrosc 43:901–904

    Article  Google Scholar 

  22. Freed JH (1976) Theory of slow tumbling ESR spectra for nitroxides. In: Berliner LJ (ed) Spin labelling theory and applications. Academic, New York, p 53

    Chapter  Google Scholar 

  23. Saunders JH, Frisch KC (1963) Polyurethanes: chemistry and technology. Part I, Chemistry. Intersci. Publishers, New York

    Google Scholar 

  24. Shtompel VI, Kercha YY (2008) Structure of linear polyurethanes. Naukova dumka, Kiev, in Russian

    Google Scholar 

  25. Ruland W (1975) Über die Struktur amorphen Polymere. Progr Collied Polym Sci 57:192–205

    Article  CAS  Google Scholar 

  26. Kilian H, Boueke K (1962) Röntgenographische Strukturanalyse von amorphen Polystyrol. J Polym Sci 58:311–333

    Article  Google Scholar 

  27. Nizelskii Y, Kozak N (2006) In situ nanostructured polyurethanes with immobilized transition metal coordination complexes. Macromol Sci B Phys 46:97–110

    Article  Google Scholar 

  28. Kozak N, Lobko E (2012) Bottom-up nanostructured segmented polyurethanes with immobilized in situ transition and rare-earth metal coordination compounds. In: Zafar F, Sharmin E (eds) Polymer topology – structure and properties relationship. Polyurethane, InTeOp, Croatia

    Google Scholar 

  29. Anufrik SS, Koldunov MF, Malenkov AA, Tarkovskii VV (2008) Lasing efficiency of dyes incorporated into a nanoporous class-polymer composite. J Appl Spectrosc 75:714–722

    Article  CAS  Google Scholar 

  30. Bellamy L (1971) New data on IR-spectroscopy of complex molecules. Mir, Moscow, in Russian

    Google Scholar 

  31. Nakanishi K (1962) Infrared absorption spectroscopy. Holden-Day, Tokyo

    Google Scholar 

  32. Rabek J (1982) Experimental methods in photochemistry and photophysics (parts I and II). John Wiley and Sons, Ltd., Chichester

    Google Scholar 

  33. Bezrodnyi VI, Negryiko AM, Klishevich GV, Stratilat MS, Kosyanchuk LF, Todosiichuk TT (2013) Investigations of photophysical and generation properties of active elements based on dyes in aliphatic polyurethane matrix. J Polym Res 20:1–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Bezrodna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosyanchuk, L., Bezrodna, T., Stratilat, M. et al. Peculiarities of interactions between 6-aminophenalenone dye and polyurethane matrix. J Polym Res 21, 564 (2014). https://doi.org/10.1007/s10965-014-0564-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0564-7

Keywords

Navigation