Skip to main content
Log in

Nitrogen rich hyperbranched polyol via A3 + B3 polycondensation: thermal, mechanical, anti-corrosive and antimicrobial properties of poly (urethane-urea)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

High performance, high solid and low in volatile organic content (VOC) multifunctional coatings have wide applications in protection and decoration of materials. This work describes the synthesis of novel hyperbranched polymer (HBP) based polyurethanes (PUs) that exhibit antimicrobial property and are environmentally benign. Nitrogen rich HBP having nitrogen atom as a core was synthesized by A3 + B3 polycondensation in two step reaction. In the first step, monomer A3, a tricarboxylic acid, was synthesized by triethanolamine (B3, the core) with succinic anhydride, while in the second step, monomers A3 and B3 were used to synthesize hyperbranched polyester polyol by polycondensation reaction. The HBP thus formed was reacted with 4,4′-methylenedicyclohexyl diisocyanate (H12 MDI) in varying ratios of NCO to OH to form NCO- terminated PU prepolymers in a self-catalyzed reaction. The prepolymers were then coated onto mild steel panels as well as tin foils and stored at ambient conditions for 20 days to evaluate the moisture-cured PU-urea film properties. The formation of tribasic acid (A3), HBP and PU was confirmed by 1H NMR, 13C NMR, FTIR and ESI-mass spectroscopy. Thermal, mechanical, anti-corrosive and antimicrobial studies as well as the effect of varying NCO to OH ratio on these properties were investigated. The properties of PU-urea were found to be suitable for corrosion protection as well as biomedical and various other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Scheme 3
Scheme 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jena KK, Raju KVSN, Prathab B, Aminabhavi TM (2007) Hyperbranched polyesters: synthesis, characterization, and molecular simulations. J Phys Chem B 111:8801–8811

    Article  CAS  Google Scholar 

  2. Kim YH (1998) Hyperbranched polymers 10 years after. J Polym Sci Part A: Polym Chem 36:1685–1698

    Article  CAS  Google Scholar 

  3. Malmstrom E, Hult A (1997) Dendritic molecules. J Macromol Sci Rev Macromol Chem Phys C 37:555–579

    Google Scholar 

  4. Frechet JMJ (1994) Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263:1710–1715

    Article  CAS  Google Scholar 

  5. Jikei M, Kakimoto M (2001) Hyperbranched polymers: a promising new class of materials. Prog Polym Sci 26:1233–1285

    Article  CAS  Google Scholar 

  6. Yang D, Chen Z, Rong X, Zhang H, Qiu F (2014) Formulation and characterization of epoxidized hydroxyl-terminated hyperbranched polyester and its application in waterborne epoxy resin. J Polym Res 21:331–338

    Article  Google Scholar 

  7. Fradet A, Tessier M (2007) First shell substitution effects in hyperbranched polymers: kinetic-recursive probability analysis. Macromolecules 40:7378–7792

    Article  CAS  Google Scholar 

  8. Liu QC, Zhao P, Chen YM (2007) Divergent synthesis of dendrimer-like macromolecules through a combination of atom transfer radical polymerization and click reaction. J Polym Sci Part A: Polym Chem 45:3330–3341

    Article  CAS  Google Scholar 

  9. Reisch A, Komber H, Voit B (2007) Kinetic analysis of two hyperbranched A2 + B3 polycondensation reactions by NMR spectroscopy. Macromolecules 40:6846–6858

    Article  CAS  Google Scholar 

  10. Hecht S, Emrich TS, Frechet JMJ (2000) Hyperbranched porphyrins-a rapid synthetic approach to multiporphyrin macromolecules. Chem Commun 21:313–314

    Article  Google Scholar 

  11. Kudo H, Maruyama K, Shindo S, Nishikubo T, Nishimura I (2006) Syntheses and properties of hyperbranched polybenzoxazole by thermal cyclodehydration of hyperbranched poly [o-(t-butoxycarbonyl) amide] via A2 + B3 approach. J Polym Sci Part A: Polym Chem 44:3640–3649

    Article  CAS  Google Scholar 

  12. Russo S, Boulares A, Mariani A (1998) Synthesis of hyperbranched aromatic polyamides by direct polycondensation. Macromol Symp 128:13–20

    Article  CAS  Google Scholar 

  13. Stumbe J-F, Bruchmann B (2004) Hyperbranched polyesters based on adipic acid and glycerol. Macromol Rapid Commun 25:921–924

    Article  CAS  Google Scholar 

  14. Chattopadhyay DK, Raju KVSN (2007) Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 32:352–418

    Article  CAS  Google Scholar 

  15. Revie RW, Uhlig HH (2004) Corrosion and corrosion control, 4th edn. Wiley, New Jersey

    Google Scholar 

  16. Madkour TM, Azzam RA (2002) Use of blowing catalysts for integral skin polyurethane applications in a controlled molecular architectural environment: synthesis and impact on ultimate physical properties. J Polym Sci Part A: Polym Chem 40:2526–2536

    Article  CAS  Google Scholar 

  17. Su T, Wang GY, Wang SL, Hu CP (2010) Fluorinated siloxane-containing waterborne polyurethaneureas with excellent hemocompatibility, waterproof and mechanical properties. Eur Polym J 46:472–483

    Article  CAS  Google Scholar 

  18. Lamba NMK, Woodhouse KA, Cooper SL (1997) Polyurethanes in biomedical applications, 1st edn. CRC Press, Florida

    Google Scholar 

  19. Siyanbola TO, Sasidhar K, Anjaneyulu B, Kumar KP, Rao BVSK, Narayan R, Olaofe O, Akintayo ET, Raju KVSN (2013) Anti-microbial and anti-corrosive poly (ester amide urethane) siloxane modified ZnO hybrid coatings from thevetia peruviana seed oil. J Mater Sci 48:8215–8227

    Article  CAS  Google Scholar 

  20. Alam J, Riaz U, Ahmad S (2008) Development of nanostructured polyaniline dispersed smart anticorrosive composite coatings. Polym Adv Technol 19:882–888

    Article  CAS  Google Scholar 

  21. Mishra AK, Narayan R, Raju KVSN, Aminabhavi TM (2012) Hyperbranched polyurethane (HBPU)-urea and HBPU-imide coatings: effect of chain extender and NCO/OH ratio on their properties. Prog Org Coat 74:134–141

    Article  CAS  Google Scholar 

  22. Huybrechts J, Dusek K (1998) Star oligomers for low VOC polyurethane coatings. Surf Coat Int 3:117–127

    Article  Google Scholar 

  23. Belote SN, Blount WN (1981) Optimizing resins for low VOC. J Coat Technol 53:33–37

    CAS  Google Scholar 

  24. Voit B (2000) New developments in hyperbranched polymers. J Polym Sci Part A: Polym Chem 38:2505–2525

    Article  CAS  Google Scholar 

  25. Bassner SL (1997) Ultra low VOC Polyurethanes coatings. US Patent 5670599

  26. Nunez CM, Ramsey GH, Barfield PM, Jones LG, Andrady AL (2010) Reduced VOC coatings using chemically modified hyperbranched polymers. US Patent 7851539 B2

  27. Mishra RS, Khanna AS (2011) Formulation and performance evaluation of hydroxyl terminated hyperbranched polyesters based poly (ester–urethane–urea) coatings on mild steel. Prog Org Coat 72:769–777

    Article  CAS  Google Scholar 

  28. Kenawy EI-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359–1384

    Article  CAS  Google Scholar 

  29. Paleari AG, Marra J, Pero AC, Rodriguez LS, Ruvolo-Filho A, Compagnoni MA (2011) Effect of incorporation of 2-tert-butylaminoethyl methacrylate on flexural strength of a denture base acrylic resin. J Appl Oral Sci 19:195–199

    CAS  Google Scholar 

  30. Goswami A, Singh AK (2004) Hyperbranched polyester having nitrogen core: synthesis and applications as metal ion extractant. React Funct Polym 61:255–263

    Article  CAS  Google Scholar 

  31. Clausnitzer C, Voit B, Comber H, Voigt D (2003) Poly (ether amide) dendrimers via nucleophilic ring opening addition reactions of phenol groups toward oxazolines: synthesis and characterization. Macromolecules 36:7065–7074

    Article  CAS  Google Scholar 

  32. Bhardwaj R, Mohanty AK (2007) Modification of brittle polylactide by novel hyperbranched polymer-based nanostructures. Biomacromolecules 8:2476–2484

    Article  CAS  Google Scholar 

  33. Jena KK, Chattopadhyay DK, Raju KVSN (2007) Synthesis and characterization of hyperbranched polyurethane-urea coatings. Eur Polym J 43:1825–1837

    Article  CAS  Google Scholar 

  34. Spindler R, Frechet JMJ (1993) Synthesis and characterization of hyperbranched polyurethanes prepared from blocked isocyanate monomers by step-growth polymerization. Macromolecules 26:4809–4813

    Article  CAS  Google Scholar 

  35. Dhevi DM, Prabhu AA, Kim H, Pathak M (2014) Studies on the toughening of epoxy resin modified with varying hyperbranched polyester-toluene diisocyanate content. J Polym Res 21:503–511

    Article  Google Scholar 

  36. Segawa Y, Higashihara T, Ueda M (2010) Hyperbranched polymers with controlled degree of branching from 0 to 100%. J Am Chem Soc 132:11000–11001

    Article  CAS  Google Scholar 

  37. Holtel D, Burgath A, Frey H (1997) Degree of branching in hyperbranched polymers. Acta Polym 48:30–35

    Article  Google Scholar 

  38. Gupta T, Adhikari B (2003) Thermal degradation and stability of HTBP-based polyurethane and polyurethane-ureas. Thermochim Acta 402:169–181

    Article  CAS  Google Scholar 

  39. Chattopadhyay DK, Sreedhar B, Raju KVSN (2006) Influence of varying hard segments on the properties of chemically crosslinked moisture-cured polyurethane-urea. J Polym Sci Part B: Polym Phys 44:102–118

    Article  CAS  Google Scholar 

  40. Li P, Shen Y, Yang X, Li G (2012) Preparation and properties of waterborne cationic fluorinated polyurethane. J Polym Res 19:9786–9795

    Article  Google Scholar 

  41. Wang FC, Feve M, Lam TM, Pascault J-P (1994) FTIR analysis of hydrogen bonding in amorphous linear aromatic polyurethanes. I. Influence of temperature. J Polym Sci Part B: Polym Phys 32:1305–1313

    Google Scholar 

  42. Waterlot V, Couturier D, Waterlot C (2011) Structure and physical properties in crosslinked polyurethanes. J Appl Polym Sci 119:1742–1751

    Article  CAS  Google Scholar 

  43. Ning L, Wang D-N, Ying S-K (1997) Hydrogen bonding properties of segmented polyether poly (urethane urea) copolymer. Macromolecules 30:4405–4409

    Article  CAS  Google Scholar 

  44. Ren Z, Ma D, Yang X (2003) H-bond and conformations of donors and acceptors in model polyether based polyurethanes. Polymer 44:6419–6425

    Article  CAS  Google Scholar 

  45. Mishra AK, Chattopadhyay DK, Sreedhar B, Raju KVSN (2006) FT-IR and XPS studies of polyurethane-urea-imide coatings. Prog Org Coat 55:231–243

    Article  CAS  Google Scholar 

  46. Alam M, Ashraf SM, Ahmad S (2008) Pyridine-poly (urethane ester amide) coatings from linseed oil. J Polym Res 15:343–350

    Article  CAS  Google Scholar 

  47. Trovati G, Sanches EA, Neto SC, Mascarenhas YP, Chierice GO (2010) Characterization of polyurethane resins by FTIR, TGA and XRD. J Appl Polym Sci 115:263–268

    Article  CAS  Google Scholar 

  48. Kontou E, Spathis G, Niaounakis M, Kefalas V (1990) Physical and chemical cross-linking effects in polyurethane elastomer. Colloid Polym Sci 268:636–644

    Article  CAS  Google Scholar 

  49. Wang L, Shen Y, Lai X, Li Z, Liu M (2011) Synthesis and properties of crosslinked waterborne polyurethane. J Polym Res 18:469–476

    Article  CAS  Google Scholar 

  50. Prisacariu, C (2011) Polyurethane Elastomers: From morphology to mechanical aspects, first edn. Springer

  51. Chen S, Wang Q, Wang T (2012) Preparation, tensile, damping and thermal properties of polyurethane based on various structural polymer polyols: effect of composition and isocyanate index. J Polym Res 19:9994–10000

    Article  Google Scholar 

  52. Wang H-H, Lin M-S (1998) Biocidal polyurethane and its antibacterial properties. J Polym Res 5:177–186

    Article  CAS  Google Scholar 

  53. Kantheti S, Sarath PS, Narayan R, Raju KVSN (2013) Synthesis and characterization of triazole rich polyether polyols using click chemistry for polyurethanes. React Funct Polym 73:1597–1605

    Article  CAS  Google Scholar 

  54. Ikeda T, Tazuke S (1984) Biologically active polycations: synthesis and antimicrobial activity of poly(trialkylvinylbenzylammonium chloride)s. Makromol Chem 185:869–876

    Article  CAS  Google Scholar 

  55. Chen CZ, Beck-Tan NC, Dhurjati P, Van Dyk TK, LaRossa RA, Cooper SL (2000) Quaternary ammonium functionalized poly (propylene imine) dendrimers as effective antimicrobials: structure-activity studies. Biomacromolecules 1:473–480

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present research work was supported by CSIR, India under Intel-Coat Project (CSC-0114). RK thank to CSIR-IICT, Hyderabad and NIT, Durgapur, for providing necessary facilities to carry out this work and the Ministry of HRD and Department of Science & Technology, Govt of India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. S. N. Raju.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 59.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Narayan, R., Aminabhavi, T.M. et al. Nitrogen rich hyperbranched polyol via A3 + B3 polycondensation: thermal, mechanical, anti-corrosive and antimicrobial properties of poly (urethane-urea). J Polym Res 21, 547 (2014). https://doi.org/10.1007/s10965-014-0547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0547-8

Keywords

Navigation