Skip to main content
Log in

The morphology, crystallization and conductive performance of a polyoxymethylene/carbon nanotube nanocomposite prepared under microinjection molding conditions

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This paper comparatively investigated the structures of a microinjection molded part (micropart) and a conventional injection molded part (macropart) of a polyoxymethylene/carbon nanotube (POM/CNT) conductive nanocomposite. We also investigated the influence of microinjection molding conditions on the CNTs dispersion morphology, POM crystallization and conductive properties of the micropart. Results show that the incorporated CNTs improve the replication quality of the prepared micropart. The CNTs morphology and POM crystallization of the micropart are very different from those of the macropart. The POM spherulite structures are formed in the macropart and highly oriented shish-kebab-like structures are formed in the micropart. Differences in the crystallization structures are correspondingly reflected in differential scanning calorimetry (DSC) results. Incorporation of CNTs, an increase in injection rate or a rise in mold temperature are equally conducive to formation of the shish-kebab structures. In addition, an increase of mold temperature and the annealing treatment are both helpful in increasing the conductivity of the micropart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Michaeli W, Spennemann A, Gärtner R (2004) J Polym Eng 24:81–94

    Google Scholar 

  2. Whiteside B, Martyn M, Coates P, Greenway G, Allen P, Hornsby P (2004) Plast Rubber Compos 33:11–17

    Article  CAS  Google Scholar 

  3. Liu F, Guo C, Wu X, Qian X, Liu H, Zhang J (2012) Polym Adv Technol 23:686–694

    Article  CAS  Google Scholar 

  4. Kamal MR, Chu J, Derdouri S, Hrymak A (2010) Plast Rubber Compos 39:332–341

    Article  CAS  Google Scholar 

  5. Giboz J, Copponnex T, Mélé P (2009) J Micromech Microeng 19:025–023

    Article  Google Scholar 

  6. Lu Z, Zhang K (2009) Int J Adv Manuf Technol 40:490–496

    Article  Google Scholar 

  7. Bao HD, Guo ZX, Yu J (2008) Polymer 49:3826–3831

    Article  CAS  Google Scholar 

  8. Wang F, Wu JK, Xia HS, Wang Q (2007) Plast Rubber Compos 36:7–8

    CAS  Google Scholar 

  9. Zeng Y, Ying Z, Du J, Cheng HM (2007) J Phys Chem C 111(37):13945–13950

    Article  CAS  Google Scholar 

  10. Sun Y, Bao HD, Jia MY, Guo ZX, Yu J (2009) Acta Polym Sin 7:684–688

    Article  Google Scholar 

  11. Yin H, Bao HD, Li J, Guo ZX, Yu J (2010) Acta Polym Sin 9:1152–1156

    Article  Google Scholar 

  12. Zhang BY, Xin F, Guo ZX, Yu J (2012) Acta Polym Sin 2:174–179

    Article  CAS  Google Scholar 

  13. Piotter V, Mueller K, Plewa K, Ruprecht R, Hausselt J (2002) Microsyst Technol 8:387–390

    Article  CAS  Google Scholar 

  14. Ong NS, Zhang H, Woo WH (2006) Mater Manuf Process 21:824–831

    Article  CAS  Google Scholar 

  15. Attia UM, Marson S, Alcock JR (2009) Microfluid Nanofluid 7:1–28

    Article  CAS  Google Scholar 

  16. Heckele M, Schomburg W (2004) J Micromech Microeng 14:R1

    Article  CAS  Google Scholar 

  17. Baldi F, Bongiorno A, Fassi I, Franceschini A, Pagano C, Riccò T, Surace R, Tescione F (2013) Polym Eng Sci. doi:10.1002/pen.23582

    Google Scholar 

  18. Xie L, Ziegmann G (2009) Microsyst Technol 15:1427–1435

    Article  CAS  Google Scholar 

  19. Griffiths C, Dimov S, Brousseau E, Hoyle R (2007) J Mater Process Technol 189:418–427

    Article  CAS  Google Scholar 

  20. Chu J, Kamal MR, Derdouri S, Hrymak A (2010) Polym Eng Sci 50:1214–1225

    Article  CAS  Google Scholar 

  21. Griffiths C, Dimov S, Brousseau E (2008) Proc Inst Mech Eng B J Eng Manuf 222:1119–1130

    Article  Google Scholar 

  22. Wittmann Group (2013) MicroPower. http://www.battenfeld.se/pdf/battenfeld/battenfeld_MicroPower_V_GB.pdf. Accessed 20 Aug 2013

  23. Jia YC, Yu KJ, Qian K, Cao HJ, Chen JJ (2012) Mater Rev China 26(6):109–113

    CAS  Google Scholar 

  24. Wu XL, Yue T, Lu RR, Zhu DZ, Zhu ZY (2005) Spectrosc Spectr Anal 25(10):1595–1598

    CAS  Google Scholar 

  25. Gu RA, Chen H, Liu GK, Ren B (2003) Acta Chim Sin 61(10):1550–1555

    CAS  Google Scholar 

  26. Yao DG (2011) Polymer micro-molding/forming processes. In: Koç M, Ozel T (eds) Micro-manufacturing: Design and manufacturing of micro-products, 1st edn. Wiley, New Jersey, pp 197–233, Chapter 7

    Chapter  Google Scholar 

  27. Rubin II (1972) Injection molding: Theory and practice. Wiley, New York

    Google Scholar 

  28. Iguchi M, Murase I (1975) J Polym Sci B Polym Phys 13:1461–1465

    Article  CAS  Google Scholar 

  29. Wang K, Chen F, Zhang Q, Fu Q (2008) Polymer 49:4745–4755

    Article  CAS  Google Scholar 

  30. Viana JC (2004) Polymer 45(3):993–1005

    Article  CAS  Google Scholar 

  31. Bassett DC (1981) Principles of polymer morphology. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

This work was kindly supported by the National Natural Science Foundation of China (51010004 and 51121001) and the Program of Introducing Talents of Discipline to Universities (B13040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Chen, Y. & Liu, Z. The morphology, crystallization and conductive performance of a polyoxymethylene/carbon nanotube nanocomposite prepared under microinjection molding conditions. J Polym Res 21, 451 (2014). https://doi.org/10.1007/s10965-014-0451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0451-2

Keywords

Navigation