Skip to main content
Log in

Electrical properties of poly(arylene ether nitrile)/graphene nanocomposites prepared by in situ thermal reduction route

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In order to obtain highly flexible polymer composites with high dielectric performance, novel poly(arylene ether nitrile) (PEN)/graphene nanocomposites were prepared by a two-step method, involving facile solution-casting for dispersing graphene oxide and followed by thermal reduction of dispersed graphene oxide at 200 °C for 2 h. The results showed that the in situ thermal reduction method can help to fabricate PEN-based nanocomposites with homogenously dispersed graphene sheets and give rise to a 236 % increase of the dielectric constant between 160 °C and 200 °C of from 10.43 to 24.65 at 50 Hz. As a result of the formation of an alternative multilayered structure of PEN and graphene sheets, a typical percolation transition was observed as the content of the graphene oxide increased. The conductivity and dielectric constant followed the percolation threshold power law, yielding a percolation threshold (f c ) of 0.014. The corresponding critical exponent was calculated as μ = t(t + s)− 1 = 0.83, which was in good agreement with the experimental data of μ = 0.81 as f graphene = 0.013. This type of PEN/graphene composite with low percolation threshold can be potentially applied as novel dielectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saxena A, Sadhana R, Rao VL, Kanakavel M, Ninan KN (2003) Polym Bull 50:219–226

    CAS  Google Scholar 

  2. Saxena A, Rao VL, Ninan KN (2003) Eur Polym J 39:401–405

    Article  CAS  Google Scholar 

  3. Matsuo S, Murakami T, Takasawa RJ (1993) Polym Sci Polym Chem 31:3439–3446

    Article  CAS  Google Scholar 

  4. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Adv Mater 12:750–753

    Article  CAS  Google Scholar 

  5. Thostenson ET, Ren Z, Chou TW (2001) Comput Sci Technol 61:1899–1912

    Article  CAS  Google Scholar 

  6. Liu XB, Long SR, Luo DW, Chen WJ, Cao GP (2008) Mater Lett 62:19–22

    Article  CAS  Google Scholar 

  7. Guo H, Sreekumar TV, Liu T, Minus M, Kumar S (2005) Polymer 46:3001–3005

    Article  CAS  Google Scholar 

  8. Ezquerra TA, Kulescza M, Balta-Calleja FJ (1991) Synth Met 41:915–920

    Article  CAS  Google Scholar 

  9. Saunders DS, Galea SC, Deirmendjian GK (1993) Composite 24:309–321

    Article  Google Scholar 

  10. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282–286

    Article  CAS  Google Scholar 

  11. Wakabayashi K, Pierre C, Dikin DA, Ruoff RS, Ramanathan T, Brinson LC, Torkelson JM (2008) Macromolecules 41:1905–1908

    Article  CAS  Google Scholar 

  12. Zhan YQ, Lei YJ, Meng FB, Zhong JC, Zhao R, Liu XB (2011) J Mater Sci 46:824–831

    Article  CAS  Google Scholar 

  13. Chen GH, Weng WG, Wu DJ, Wu CL, Lu JR, Wang PP, Chen XF (2004) Carbon 42:753–759

    Article  CAS  Google Scholar 

  14. Chen Q, Du PY, Jin L, Weng WJ, Han GR (2007) Appl Phys Lett 91:022912

    Article  Google Scholar 

  15. Dang ZM, Wu JP, Xu HP, Yao SH, Jiang MJ, Bai JB (2007) Appl Phys Lett 91:072912

    Article  Google Scholar 

  16. Garcia AG, Baltazar SE, Castro AHR, Robles JFP, Rubio A (2008) J Comput Theor Nanosci 5:1–9

    Article  Google Scholar 

  17. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  18. Fang M, Wang KG, Lu HB, Yang YL, Nutt S (2010) J Mater Chem 20:1982–1992

    Article  CAS  Google Scholar 

  19. Yang JT, Wu MJ, Chen F, Fei ZD, Zhong MQ (2011) J Supercrit Fluid 56:201–207

    Article  CAS  Google Scholar 

  20. Yang HF, Shan CS, Li FH, Han DX, Zhang QX, Niu L (2009) Chem Commun 26:3880–3882

    Article  Google Scholar 

  21. Yang XL, Zhan YQ, Yang J, Tang HL, Meng FB, Zhong JC, Zhao R, Liu XB (2012) Polym Int 61:880–887

    Article  CAS  Google Scholar 

  22. Higginbotham AL, Lomeda JR, Morgan AB, Tour JM (2009) Appl Mater Interfaces 1:2256–2261

    Article  CAS  Google Scholar 

  23. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  24. Lerf A, He H, Forster M, Klinowski J (1998) J Phys Chem B 102:4477–4482

    Article  CAS  Google Scholar 

  25. Dreyer DR, Park S, Bielawski CW, Ruoff R (2010) Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  26. Uhl F, Wilkie C (2004) Polym Degrad Stab 84:215–226

    Article  CAS  Google Scholar 

  27. Stankovich S, Piner R, Chen X, Wu N, Nguyen S, Ruoff R (2006) J Mater Chem 16:155–158

    Article  CAS  Google Scholar 

  28. Vaia RA, Wagner HD (2004) Mater Today 7:32–37

    Article  CAS  Google Scholar 

  29. Du XS, Xiao M, Meng YZ (2004) Synth Met 143:129–132

    Article  CAS  Google Scholar 

  30. Zhu YW, Stoller MD, Cai WW, Velamakanni A, Piner RD, Chen D, Ruoff RS (2011) ACS Nano 4:1227–1233

    Article  Google Scholar 

  31. Gao XF, Jang J, Nagase S (2010) J Phys Chem C 114:832–842

    Article  CAS  Google Scholar 

  32. Chen WF, Yan LF, Prakriti RB (2010) Carbon 48:1146–1152

    Article  CAS  Google Scholar 

  33. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806–4816

    Article  CAS  Google Scholar 

  34. Zhu CZ, Guo SJ, Fang YX, Dong SJ (2010) ACS Nano 4:2429–2437

    Article  CAS  Google Scholar 

  35. Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Adv Mater 19:852–857

    Article  CAS  Google Scholar 

  36. He F, Lau S, Chan HL, Fan JT (2009) Adv Mater 21:710–715

    Article  CAS  Google Scholar 

  37. Wang DR, Zhang XM, Zha JW, Zhao J, Dang ZM, Hu GH (2013) Polymer 54:1916–1922

    Article  CAS  Google Scholar 

  38. Xu H, Cheng ZY, Olson D, Mai T, Zhang QM (2001) Appl Phys Lett 78:2360

    Article  CAS  Google Scholar 

  39. Song Y, Noh TW, Lee SI, Gaines JR (1986) Phys Rev B 33:904–908

    Article  CAS  Google Scholar 

  40. Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Polymer 45:8863–8870

    Article  Google Scholar 

  41. Fan P, Wang L, Yang JT, Chen F, Zhong MQ (2012) Nanotechnology 23:365702

    Article  Google Scholar 

  42. Li C, Gu Y, Liu XB, Zou YB, Tang AB (2006) Thin Solid Films 515:1872

    Article  Google Scholar 

  43. Zhong JC, Tang HL, Chen YW, Liu XB (2010) J Mater Sci Mater Electron 21:1244–1248

    Article  CAS  Google Scholar 

  44. Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF (1995) Phys Rev E 52:819–828

    Article  CAS  Google Scholar 

  45. Nan CW (1993) Prog Mater Sci 37:1–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Natural Science Foundation (No. 51173021) and “863” National Major Program of High Technology (2012AA03A212) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Yang, W. & Liu, X. Electrical properties of poly(arylene ether nitrile)/graphene nanocomposites prepared by in situ thermal reduction route. J Polym Res 21, 358 (2014). https://doi.org/10.1007/s10965-014-0358-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0358-y

Keywords

Navigation