Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization

  • Hossein GhasemzadehEmail author
  • Fereshteh Ghanaat
Original Paper


Superabsorbent hydrogel-silver nanocomposite based on poly(vinyl alcohol) (PVA) and sodium alginate (Na-Alg) was prepared using free radical polymerization in the presence of acrylamide (AAm) monomer. The reactions were conducted under normal atmospheric conditions, using ammonium persulfate (APS) as an initiator and methylene bisacrylamide (MBA) as a crosslinking agent. The effect of reaction parameters such as MBA, AAm, and APS concentration as well as Na-Alg/PVA weight ratio on the water absorbency and the gel content of the hydrogels were studied. Evidence of grafting was obtained by comparing the FT-IR spectra and the TGA of the initial substrates with that of the superabsorbent hydrogel. Furthermore, Ag nanoparticles were synthesized in a green synthesis process. Highly stable silver nanoparticles were obtained with the hydrogel networks as nanoreactor via in situ reduction of silver nitrate by using sodium borohydride as a reducing agent. The hydrogel silver nanocomposite was fully characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The effect of cross-link density, and Na-Alg/PVA weight ratio on the loading and the size of nanoparticles were studied. The antibacterial activity of the silver nanocomposite hydrogel was investigated as well.


Nanocomposite Hydrogel Sodium alginate Polyvinyl alcohol Acrylamide 


  1. 1.
    Deligkaris K, Shiferaw Tadele T, Olthuis W, van den Berg A (2010) Hydrogel-based devices for biomedical applications. Sensors Actuators B Chem 147:765–774CrossRefGoogle Scholar
  2. 2.
    Samchenko Y, Ulberg Z, Korotych O (2011) Multipurpose smart hydrogel systems. Adv Colloid Interf Sci. doi: 10.1016/j.cis.2011.06.005 Google Scholar
  3. 3.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17:451–477Google Scholar
  4. 4.
    Endo T, Ikeda R, Yanagida Y, Hatsuzawa T (2008) Stimuli-responsive hydrogel–silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor. Anal Chim Acta 611:205–211CrossRefGoogle Scholar
  5. 5.
    Paz Zanini V, López de Mishima B, Solís V (2011) An amperometric biosensor based on lactate oxidase immobilized in laponite–chitosan hydrogel on a glassy carbon electrode. Application to the analysis of L-lactate in food samples. Sensors Actuators B Chem 155:75–80CrossRefGoogle Scholar
  6. 6.
    Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HGP (2008) Review on hydrogel-based pH sensors and microsensors. Sensors. doi: 10.3390/s8010561 Google Scholar
  7. 7.
    Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci. doi: 10.1016/j.progpolymsci.2008.07.005 Google Scholar
  8. 8.
    Lin Ch C, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408CrossRefGoogle Scholar
  9. 9.
    Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci. doi: 10.1016/j.progpolymsci.2008.01.002 Google Scholar
  10. 10.
    Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release. doi: 10.1016/j.jconrel.2007.01.004 Google Scholar
  11. 11.
    Aurand ER, Lampe KJ, Bjugstad KB (2012) Defining and designing polymers and hydrogels for neural tissue engineering. Neurosci Res. doi: 10.1016/j.neures.2011.12.005 Google Scholar
  12. 12.
    Tan R, She Z, Wang M, Fang Z, Liu Y, Feng Q (2012) Thermo-sensitive alginate-based injectable hydrogel for tissue engineering original research article. Carbohydr Polym 87:1515–1521CrossRefGoogle Scholar
  13. 13.
    Abd El-Mohdy HL (2013) Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. J Polym Res. doi: 10.1007/s10965-013-0177-6 Google Scholar
  14. 14.
    Wang T, Zhu X-K, Xue X-T, Wu D-Y (2012) Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym 88:75–83CrossRefGoogle Scholar
  15. 15.
    Sudheesh Kumar PT, Abhilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr Polym 80:761–767CrossRefGoogle Scholar
  16. 16.
    Compan V, Andrio A, Lopez-Alemany A, Riande E, Refojo MF (2002) Oxygen permeability of hydrogel contact lenses with organosilicon moieties. Biomaterials. doi: 10.1016/S0142-9612(02)00012-1 Google Scholar
  17. 17.
    El-Sherif H, El-Masry M, Kansoh A (2011) Hydrogels as template nanoreactors for silver nanoparticles formation and their antimicrobial activities. Macromol Res. doi: 10.1007/s13233-011-1109-0 Google Scholar
  18. 18.
    Lu Y, Spyra P, Mei Y, Ballauff M, Pich A (2007) Composite hydrogels: robust carriers for catalytic nanoparticles. Macromol Chem Phys. doi: 10.1002/macp.200600534 Google Scholar
  19. 19.
    Sahiner N, Ozay H, Ozay O, Aktas N (2010) A soft hydrogel reactor for cobalt nanoparticle preparation and use in the reduction of nitrophenols. Appl Catal B Environ 101:137–143CrossRefGoogle Scholar
  20. 20.
    Mallicka K, Witcombb M, Scurrell M (2006) Silver nanoparticle catalyzed redox reaction: an electron relay effect. Mater Chem Phys 97:283–287CrossRefGoogle Scholar
  21. 21.
    Daniel MC, Astrue D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  22. 22.
    Sahiner N, Ozay O, Inger E, Aktas N (2011) Controllable hydrogen generation by use smart hydrogel reactor containing Ru nano catalyst and magnetic iron nanoparticles. J Power Sources 196:10105–10111CrossRefGoogle Scholar
  23. 23.
    Sahiner N, Butun S, Ozay O, Dibek B (2012) Utilization of smart hydrogel–metal composites as catalysis media. J Colloid Interface Sci. doi: 10.1016/j.jcis.2011.08.080 Google Scholar
  24. 24.
    Kiesow A, Morris JE, Radehaus C, Heilmann A (2003) Switching behavior of plasma polymer films containing silver nanoparticles. J Appl Phys 94:6988–6990CrossRefGoogle Scholar
  25. 25.
    Lee T, Liu J, Chen N-P, Andres RP, Janes DB, Reifenberger R (2000) Electronic properties of metallic nanoclusters on semiconductor surfaces: implications for nanoelectronic device applications. J Nanoparticle Res. doi: 10.1023/A:1010053303142 Google Scholar
  26. 26.
    Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315:389–395. doi: 10.1016/j.jcis.2007.06.068 CrossRefGoogle Scholar
  27. 27.
    Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306CrossRefGoogle Scholar
  28. 28.
    Tyliszczak B, Pielichowski K (2013) Novel hydrogels containing nanosilver for biomedical applications - synthesis and characterization. J Polym Res. doi: 10.1007/s10965-013-0191-8 Google Scholar
  29. 29.
    Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interf Sci 166:119–135Google Scholar
  30. 30.
    Naeem H, Farooqi ZH, Ali Shah L, Siddiq M (2012) Synthesis and characterization of p(NIPAM-AA-AAm) microgels for tuning of optical Properties of silver nanoparticles. J Polym Res. doi: 10.1007/s10965-012-9950-1 Google Scholar
  31. 31.
    Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta. doi: 10.1016/j.cca.2010.08.016 Google Scholar
  32. 32.
    Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behavior and effects in the aquatic environment. Environ Int. doi: 10.1016/j.envint.2010.10.012 Google Scholar
  33. 33.
    Jubya KA, Dwivedia C, Kumara M, Kotab S, Misrab HS, Bajaja PN (2012) Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study. Carbohydr Polym 89:906–913CrossRefGoogle Scholar
  34. 34.
    Pourjavadi A, Farhadpour B, Seidi F (2009) Synthesis and investigation of swelling behavior of new agar based superabsorbent hydrogel as a candidate for agrochemical delivery. J Polym Res. doi: 10.1007/s10965-009-9270-2 Google Scholar
  35. 35.
    Rezanejade Bardajee G, Pourjavadi A, Soleyman R (2011) Novel highly swelling nanoporous hydrogel based on polysaccharide/protein hybrid backbone. J Polym Res. doi: 10.1007/s10965-010-9423-3 Google Scholar
  36. 36.
    Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305CrossRefGoogle Scholar
  37. 37.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications review article. Prog Polym Sci. doi: 10.1016/j.progpolymsci.2011.06.003 Google Scholar
  38. 38.
    Yang J-S, Xie Y-J, He W (2011) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84:33–39CrossRefGoogle Scholar
  39. 39.
    DeMerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41:319–326CrossRefGoogle Scholar
  40. 40.
    Chiellini E, Corti A, D’Antone S, Solaro R (2003) Biodegradation of poly(vinyl alcohol) based materials. Prog Polym Sci. doi: 10.1016/S0079-6700(02)00149-1 Google Scholar
  41. 41.
    Xiaozhi T, Sajid A (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85:7–16CrossRefGoogle Scholar
  42. 42.
    Paradossi G, Cavalieri F, Chiessi E, Spagnoli C, Cowman MK (2003) Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med. doi: 10.1023/A:1024907615244 Google Scholar
  43. 43.
    Kokabi M, Sirousazar M, Hassan ZM (2007) PVA-Clay nanocomposite hydrogels for wound dressing. Eur Polym J. doi: 10.1016/j.eurpolymj.2006.11.030 Google Scholar
  44. 44.
    Abd El-Mohdy HL, Ghanem S (2009) Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation. J Polym Res. doi: 10.1007/s10965-008-9196-0 Google Scholar
  45. 45.
    Pourjavadi A, Amini-Fazl MS, Hosseinzadeh H (2005) Partially hydrolyzed crosslinked alginate-graft-polymethacrylamide as a novel biopolymer-based superabsorbent hydrogel having pH-responsive properties. Macromol Res. doi: 10.1007/BF03219014 Google Scholar
  46. 46.
    Kumbar SG, Aminabhavi TM (2002) Preparation and characterization of interpenetrating network beads of poly(vinyl alcohol)-grafted-poly(acrylamide) with sodium alginate and their controlled release characteristics for cypermethrin pesticide. J Appl Polym Sci 84:552–560CrossRefGoogle Scholar
  47. 47.
    Zohuriaan-Mehr MJ, Pourjavadi A (2003) Superabsorbent hydrogels from starch-g-PAN: effect of some reaction variables on swelling behavior. J Polym Mater. doi: 10.1007/s10570-012-9711-7 Google Scholar
  48. 48.
    Thomas V, Namdeo M, Murali Mohan Y, Bajpai SK, Bajpai M (2007) Review on polymer, hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. J Macromol Sci A Pure 45:107–119CrossRefGoogle Scholar
  49. 49.
    Wang C, Flynn NT, Langer R (2004) Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites. Adv Mater. doi: 10.1002/adma.200306516 Google Scholar
  50. 50.
    Murali Mohan Y, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Mohana Raju K (2010) Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci. doi: 10.1016/j.jcis.2009.10.008 Google Scholar
  51. 51.
    Park S, Keshava Murthy PS, Park S, Murali Mohan Y, Koh W-G (2011) Preparation of silver nanoparticle-containing semi-interpenetrating network hydrogels composed of pluronic and poly(acrylamide) with antibacterial property. J Ind Eng Chem 17:293–297CrossRefGoogle Scholar
  52. 52.
    Xu GC, Shi JJ, Li DJ, Xing HL (2009) On interaction between nano-Ag and P(AMPS-co-MMA) copolymer synthesized by ultrasonic. J Polym Res. doi: 10.1007/s10965-008-9229-8 Google Scholar
  53. 53.
    Wu J, Lin J, Zhou M, Wei C (2000) Synthesis and properties of starch-graft polyacrylamide/clay superabsorbent composite. Macromol Rapid Commun. doi: 10.1002/1521-3927(20001001 Google Scholar
  54. 54.
    Chen J, Zhao Y (2000) Relationship between water absorbency and reaction conditions in aqueous solution polymerization of polyacrylate superabsorbents. J Appl Polym Sci 75:808–814CrossRefGoogle Scholar
  55. 55.
    Pourjavadi A, Ghasemzadeh H, Hossainzadeh H (2004) Preparation and swelling behaviour of a novel anti-salt superabsorbent hydrogel based on kappa-carrageenan and sodium alginate grafted with polyacrylamide. e-Polymers no.027Google Scholar
  56. 56.
    Harish Prashanth KV, Tharanathan RN (2006) Crosslinked chitosan-preparation and characterization. Carbohydr Res 341:169–173CrossRefGoogle Scholar
  57. 57.
    Zohuriaan-Mehr MJ (2005) Advances in chitin and chitosan modification through graft copolymerization: a comprehensive review. Iran Polym J 14:235–265Google Scholar
  58. 58.
    Vázquez C, López D, Burillo G, Ogawa T (1996) Thermal crosslinking of poly(methyl methacrylate-co-N, N-dimethylaminopropylacrylamide). Polym Bull 36:325–329CrossRefGoogle Scholar
  59. 59.
    Kabiri K, Mirzadeh H, Zohuriaan-mehr MJ (2008) Undesirable effects of heating on hydrogels. J Appl Polym Sci 110:3420–3430CrossRefGoogle Scholar
  60. 60.
    Pourjavadi A, Barzegar S, Mahdavinia GR (2006) MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydr Polym 66:386–395CrossRefGoogle Scholar
  61. 61.
    Omidian H, Park K (2002) Experimental design for the synthesis of polyacrylamide superporous hydrogels. J Bioact Compat Polym 17:433–450CrossRefGoogle Scholar
  62. 62.
    Omidian H, Rocca JG, Park K (2005) Advances in superporous hydrogels. J Control Release 102:3–12CrossRefGoogle Scholar
  63. 63.
    Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. Eur Polym J. doi: 10.1016/S0014-3057(02)00391-9 Google Scholar
  64. 64.
    Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polym. doi: 10.1016/j.polymer.2006.10.045 Google Scholar
  65. 65.
    Murthy PSK, Murali Mohan Y, Varaprasad K, Sreedhar B, Mohana Raju K (2008) First successful design of semi-IPN hydrogel–silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318:217–224CrossRefGoogle Scholar
  66. 66.
    Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley-VCH, New YorkGoogle Scholar
  67. 67.
    Hosseinzadeh H, Pourjavadi A, Zohuriaan-Mehr MJ (2004) Kappa-Carrageenan-g-PAAm as a novel smart superabsorbent hydrogel with low salt sensitivity. J Biomater Sci Polym Ed 15:1499–1511CrossRefGoogle Scholar
  68. 68.
    Kim JS et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of ChemistryImam Khomeini International UniversityQazvinIran
  2. 2.Department of ChemistryIslamic Azad University, Karaj BranchKarajIran

Personalised recommendations