Advertisement

Journal of Polymer Research

, 21:339 | Cite as

Diversification of spherulite patterns in poly(ethylene succinate) crystallized with strongly interacting poly(4-vinyl phenol)

  • Hikmatun Ni’mah
  • Eamor M. WooEmail author
  • Siti Nurkhamidah
Original Paper

Abstract

Poly(ethylene succinate) (PESu) blend with amorphous poly(vinyl phenol) (PVPh) in thin films were investigated on the crystalline spherulites patterns and crystalline lamellar arrangements by using polarized optical microscopic (POM) and atomic-force microscopy (AFM). A total of nine different types of crystalline morphology were identified in the PESu/PVPh blend with amorphous contents from 10 to 35 wt.% and T c  = 40–70 °C in ultra-thin film thickness. Multiple types of PESu crystalline morphology at the same crystallization temperature (T c ) are never seen in neat PESu, but only occur in PESu/PVPh blend with amorphous PVPh higher than 20 wt.%. Crystalline morphology diagrams are summarized to display various spherulite types in the PESu/PVPh blend confined in thin films as a function of crystallization temperature and blend composition. Crystallization temperature, thickness/space confinement, and presence of interacting amorphous PVPh are the main factors for multiple types of spherulites in the blends, partly due to strong interactions via hydrogen bonding between PESu and PVPh and likely extra nucleation capacity from the diffusion interfaces.

Figure

Morphological diagrams of multiple spherulite types in PESu/PVPh blend in thin films: (Left) shown as functions of composition and crystallization temperature; (Right) symbols in corresponding to respective AFM or POM morphology.

Keywords

Spherulites Poly(ethylene succinate) Poly(4-vinyl phenol) Optical birefringence Lamellae assembly 

Notes

Acknowledgments

This work has been financially supported by a basic research grant (NSC-99-2221-E-006-014-MY3) for three consecutive years from Taiwan’s National Science Council (NSC), to which the authors express their gratitude.

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. †Hikmatun Ni’mah did most of the experiments, search references for background, produced and arranged the data and wrote the initial draft of manuscript; Eamor M. Woo conceived the original research ideas, advised and further reviewed, revised, proof-read for grammar errors, and finalized the final draft of manuscript. ‡ Siti Nurkhamidah contributed some of the original research topics from her past work, helped to doubly revise the manuscript, and commented for improvement in writing and language.

Supplementary material

10965_2013_339_MOESM1_ESM.doc (936 kb)
ESM 1 (DOC 936 kb)

References

  1. 1.
    Nurkhamidah S, Woo EM (2012) Correlation of crack patterns and ring bands in spherulites of low molecular weight poly(L-lactic acid). Colloid Polym Sci 290:275–288. doi: 10.1007/s00396-011-2544-3 CrossRefGoogle Scholar
  2. 2.
    Padden FJ Jr, Keith HD (1959) Spherulitic crystallization in polypropylene. J Appl Phys 30:1479–1484. doi: 10.1063/1.1734985 CrossRefGoogle Scholar
  3. 3.
    Norton DR, Keller A (1985) The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer 26:704–716. doi: 10.1016/0032-3861(85)90108-9 CrossRefGoogle Scholar
  4. 4.
    Maillard D, Prud’homme RE (2010) Differences between crystals obtained in PLLA-rich or PDLA-rich stereocomplex mixtures. Macromolecules 43:4006–4010. doi: 10.1021/ma902625p CrossRefGoogle Scholar
  5. 5.
    Xu H, Teng CQ, Mao ZP, Yu MH (2012) Study on the preparation and properties of lactic acid based copolymer. J Polym Res 19:9960–9965. doi: 10.1007/s10965-012-9960-z CrossRefGoogle Scholar
  6. 6.
    Keith HD, Padden FJ, Walter NM, Wyckoff HW (1959) Evidence for a second crystal form of polypropylene. J Appl Phys 30:1485–1488. doi: 10.1063/1.1734986 CrossRefGoogle Scholar
  7. 7.
    Turner-Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134–158. doi: 10.1002/macp.1964.020750113 CrossRefGoogle Scholar
  8. 8.
    Turner-Jones A, Cobbold AJ (1968) The β crystalline form of isotactic polypropylene. J Polym Sci B Polym Lett 6:539–546. doi: 10.1002/pol.1968.110060802 CrossRefGoogle Scholar
  9. 9.
    Binsbergen FL, DeLange BGM (1968) Morphology of polypropylene crystallized from the melt. Polymer 9:23–40. doi: 10.1016/0032-3861(68)90006-2 CrossRefGoogle Scholar
  10. 10.
    Varga J, Ehrenstein GW (1997) High-temperature hedritic crystallization of the β-modification of isotactic polypropylene. Colloid Polym Sci 275:511–519. doi: 10.1007/s003960050113 CrossRefGoogle Scholar
  11. 11.
    Chen YF, Woo EM, Li SH (2008) Dual types of spherulites in poly(octamethylene terephthalate) confined in thin-film growth. Langmuir 24:11880–11888. doi: 10.1021/la802192w CrossRefGoogle Scholar
  12. 12.
    Woo EM, Chen YF (2009) Single- and double-ring spherulites in poly(nonamethylene terephthalate). Polymer 50:4706–4717. doi: 10.1016/j.polymer.2009.07.040 CrossRefGoogle Scholar
  13. 13.
    Chen YF, Woo EM (2009) Annular multi-shelled spherulites in interiors of bulk-form poly(nonamethylene terephthalate). Macromol Rapid Commun 30:1911–1916. doi: 10.1002/marc.200900292 CrossRefGoogle Scholar
  14. 14.
    Woo EM, Nurkhamidah S, Chen YF (2011) Surface and interior views on origins of two types of banded spherulites in poly(nonamethylene terephthalate). Phys Chem Chem Phys 13:17841–17851. doi: 10.1039/C1CP22249J CrossRefGoogle Scholar
  15. 15.
    Yen KC, Woo EM, Tashiro K (2010) Microscopic fourier transform infrared characterization on two types of spherulite with polymorphic crystals in poly(heptamethylene terephthalate). Macromol Rapid Commun 31:1343–1347. doi: 10.1002/marc.201000054 CrossRefGoogle Scholar
  16. 16.
    Yen KC, Woo EM, Tashiro K (2010) Six types of spherulite morphologies with polymorphic crystals in poly(heptamethylene terephthalate). Polymer 51:5592–5603. doi: 10.1016/j.polymer.2010.09.031 CrossRefGoogle Scholar
  17. 17.
    Braun D, Jacobs M, Hellmann GP (1994) On the morphology of poly(vinylidene fluoride) crystals in blends. Polymer 35:706–717. doi: 10.1016/0032-3861(94)90866-4 CrossRefGoogle Scholar
  18. 18.
    Crämer K, Lima MFS, Magonov SN, Hellmann EH, Jacobs M, Hellmann GP (1998) Atomic force microscopy on tree-like crystals in polyvinylidene fluoride blends. J Mater Sci 33:2305–2312. doi: 10.1023/A:1004387304385 CrossRefGoogle Scholar
  19. 19.
    Huang IH, Chang L, Woo EM (2011) Tannin induced single crystalline morphology in poly(ethylene succinate). Macromol Chem Phys 212:1155–1164. doi: 10.1002/macp.201100005 CrossRefGoogle Scholar
  20. 20.
    Nurkhamidah S, Woo EM, Huang IH, Su CC (2011) Phase behavior and crystal morphology in poly (ethylene succinate) biodegradably modified with tannin. Colloid Polym Sci 289:1563–1578. doi: 10.1007/s00396-011-2479-8 CrossRefGoogle Scholar
  21. 21.
    Gan ZH, Abe H, Doi Y (2000) Biodegradable poly(ethylene succinate) (PES). 1. Crystal growth kinetics and morphology. Biomacromolecules 1:704–712. doi: 10.1021/bm0000541 CrossRefGoogle Scholar
  22. 22.
    Iwata T, Doi Y, Isono K, Yoshida Y (2001) Morphology and enzymatic degradation of solution-grown single crystals of poly(ethylene succinate). Macromolecules 34:7343–7348. doi: 10.1021/ma010865c CrossRefGoogle Scholar
  23. 23.
    Kawashima K, Kawano R, Miyagi T, Umemoto S, Okui N (2003) Morphological changes in flat-on and edge-on lamellae of poly(Ethylene Succinate) crystallized from molten thin films. J Macromol Sci B—Phys B42:889–899. doi: 10.1081/MB-120021613 CrossRefGoogle Scholar
  24. 24.
    Lu JM, Qiu ZB, Yang WT (2008) Effects of blend composition and crystallization temperature on unique crystalline morphologies of miscible poly(ethylene succinate)/poly(ethylene oxide) blends. Macromolecules 41:141–148. doi: 10.1021/ma7020997 CrossRefGoogle Scholar
  25. 25.
    Zeng JB, Zhu QY, Li YD, Qiu ZC, Wang YZ (2010) Unique crystalline/crystalline polymer blends of poly(ethylene succinate) and poly(p-dioxanone): miscibility and crystallization behaviors. J Phys Chem B 114:14827–14833. doi: 10.1021/jp104709z CrossRefGoogle Scholar
  26. 26.
    Qiu Z, Fujinami S, Komura M, Nakajima K, Ikehara T, Nishi T (2004) Miscibility and crystallization of poly(ethylene succinate)/poly(vinyl phenol) blends. Polymer 45:4515–4521. doi: 10.1016/j.polymer.2004.04.033 CrossRefGoogle Scholar
  27. 27.
    Zhang L, Goh SH, Lee SY (1998) Miscibility and crystallization behaviour of poly(l-lactide)/poly(p-vinylphenol) blends. Polymer 39:4841–4847. doi: 10.1016/S0032-3861(97)10167-7 CrossRefGoogle Scholar
  28. 28.
    Shirahase T, Komatsu Y, Marubayashi H, Tominaga Y, Asai S, Sumita M (2007) Miscibility and hydrolytic degradation in alkaline solution of poly(L-lactide) and poly(p-vinyl phenol) blends. Polym Degrad Stab 92:1626–1631. doi: 10.1016/S0032-3861(97)10167-7 CrossRefGoogle Scholar
  29. 29.
    Nurkhamidah S, Woo EM (2011) Effects of crystallinity and molecular weight on crack behavior in crystalline poly(L-lactic acid). J Appl Polym Sci 122:1976–1985. doi: 10.1002/app.34021 CrossRefGoogle Scholar
  30. 30.
    Maillard D, Prud’homme RE (2008) The crystallization of ultrathin films of polylactides — Morphologies and transitions. Can J Chem 86:556–563. doi: 10.1139/v08-045 CrossRefGoogle Scholar
  31. 31.
    Duan Y, Jiang Y, Jiang S, Li L, Yan S, Schultz JM (2004) Depletion-induced nonbirefringent banding in thin isotactic polystyrene thin films. Macromolecules 37:9283–9286. doi: 10.1021/ma0483165 CrossRefGoogle Scholar
  32. 32.
    Theodorou DN (1989) Variable-density model of polymer melt surfaces: structure and surface tension. Macromolecules 22:4578–4589. doi: 10.1021/ma00202a033 CrossRefGoogle Scholar
  33. 33.
    Mansfield KF, Theodorou DN (1991) Atomistic simulation of a glassy polymer/graphite interface. Macromolecules 24:4295–4309. doi: 10.1021/ma00015a011 CrossRefGoogle Scholar
  34. 34.
    Mansfield KF, Theodorou DN (1990) Atomistic simulation of a glassy polymer surface. Macromolecules 23:4430–4445. doi: 10.1021/ma00222a016 CrossRefGoogle Scholar
  35. 35.
    Harmandaris VA, Kaoulas KC, Mavrantzas VG (2005) Molecular dynamics simulation of a polymer melt/solid interface: local dynamics and chain mobility in a thin film of polyethylene melt adsorbed on graphite. Macromolecules 38:5796–5809. doi: 10.1021/ma050177j CrossRefGoogle Scholar
  36. 36.
    Chan CM, Li L (2005) Direct observation of the growth of lamellae and spherulites by AFM. Adv Polym Sci 188:1–41. doi: 10.1007/b136971 CrossRefGoogle Scholar
  37. 37.
    Fuller CS, Erickson CL (1937) An x-ray study of some linear polyesters. J Am Chem Soc 59:344–351. doi: 10.1021/ja01281a037 CrossRefGoogle Scholar
  38. 38.
    Ichikawaa Y, Noguchia K, Okuyamaa K, Washiyama J (2001) Crystal transition mechanisms in poly(ethylene succinate). Polymer 42:3703–3708. doi: 10.1016/S0032-3861(00)00702-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hikmatun Ni’mah
    • 1
  • Eamor M. Woo
    • 1
    Email author
  • Siti Nurkhamidah
    • 2
  1. 1.Department of Chemical EngineeringNational Cheng Kung UniversityTainanTaiwan
  2. 2.Department of Chemical Engineering, Faculty of Industrial TechnologySepuluh Nopember Institute of TechnologySurabayaIndonesia

Personalised recommendations