Skip to main content
Log in

Preparation of silica aerogel/polyurethane composites for the application of thermal insulation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, polyurethane was blended with silica aerogel to improve its thermal insulation property. The silica aerogel/polyurethane composite with a suitable composition 35/65 (v/v) has low thermal conductivity (0.13 W/m K) and a hydrophobic property (water contact angle of 95.6°). The pore size, pore distribution, and structure of silica aerogel (tetraethoxysilane-based) were studied to select the suitable silica aerogel for blending. The co-precursor method and the solvent exchange method were used to prepare the silica aerogel for comparison. Fourier Transform Infrared spectra confirmed that the co-precursor method created more Si-CH3 groups on the silica surface than solvent exchange method. The silica aerogel prepared by the co-precursor method had a thermal conductivity of 0.032 W/m K with a porosity of 97 %, and a water contact angle of 130°. This silica aerogel prepared was then used to blend with the polyurethane prepared by diisocyanate and poly (tetramethylene oxide), with 1,4-butanediol (1,4-BD) as the chain extender. Silica aerogel/polyurethane composites were formed as films of various compositions by the solvent casting method. Scanning electron microscopic (SEM) photographs revealed that the composites were uniform. The optimal composition of silica aerogel/polyurethane is 35/65 (v/v) with the water contact angle of 95.6° and the thermal conductivity 0.13 W/m K. The silica aerogel/polyurethane composites have no disadvantages of brittleness and hygroscopic property, and possess a low thermal conductivity property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lai YS, Tsai CW, Yang HW, Wang GP, Wu KH (2009) Mater Chem Phys 117:91–98

    Article  CAS  Google Scholar 

  2. Seo JW, Kim BK (2005) Polym Bull 54:123–128

    Article  CAS  Google Scholar 

  3. Wang Y, Al-Biloushi M, Schiraldi DA (2012) J Appl Polym Sci 124:2945–2953

    Article  CAS  Google Scholar 

  4. Gilson PW, Lee C, Ko F, Reneker D (2007) J Eng Fiber Fabr 2:32–40

    Google Scholar 

  5. On NK, Rashid AA, Nazlan MMM, Hamdan H (2012) J Appl Polym Sci 124:3108–3116

    Article  CAS  Google Scholar 

  6. Ge D, Yang L, Li Y, Zhao J (2009) J Non-Cryst Solids 355:2610–2615

    Article  CAS  Google Scholar 

  7. Rao AP, Rao AV, Pajonk GM (2005) J Sol-gel Sci Technol 36:285–292

    Article  CAS  Google Scholar 

  8. Wei TY, Chang TF, Lu SY, Chang YC (2007) J Am Ceram Soc 90:2003–2007

    Article  CAS  Google Scholar 

  9. Soleimani Dorcheh A, Abbasi MH (2008) J Mater Process Technol 199:10–26

    Article  CAS  Google Scholar 

  10. Bhagat SD, Kim YH, Ahn YS, Yeo JG (2007) Appl Surf Sci 253:3231–3236

    Article  CAS  Google Scholar 

  11. Venkateswara Rao A, Kalesh RR (2004) J Sol-gel Sci Technol 30:141–147

    Article  Google Scholar 

  12. Yang W, Wu D, Fu R (2007) J Appl Polym Sci 106:2775–2779

    Article  CAS  Google Scholar 

  13. Feng J, Zhang C, Feng J (2012) Mater Lett 67:266–268

    Article  CAS  Google Scholar 

  14. Rigacci A, Marechal JC, Repoux M, Moreno M, Achard P (2004) J Non-Cryst Solids 350:372–378

    Article  CAS  Google Scholar 

  15. Ye L, Ji ZH, Han WJ, Hu JD, Zhao T (2010) J Am Ceram Soc 93:1156–1163

    Article  CAS  Google Scholar 

  16. Rao AV, Kulkarni MM (2002) Mater Res Bull 37:1667–1677

    Article  CAS  Google Scholar 

  17. Log T, Gustafsson SE (1995) Fire Mater 19:43–49

    Article  CAS  Google Scholar 

  18. Hong J, Choi HS, Lee KS, Shim SE (2012) Polym Int 61:639–645

    Article  CAS  Google Scholar 

  19. Rao AV, Kulkarni MM, Amalnerkar DP, Seth T (2003) J Non-Cryst Solids 330:187–195

    Article  CAS  Google Scholar 

  20. Prakash SS, Brinker CJ, Hurd AJ (1995) J Non-Cryst Solids 190:264–275

    Article  CAS  Google Scholar 

  21. Husing N (2005) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim p. 27

  22. Sing KSW (1982) Pure Appl Chem 54:2201–2218

    Article  Google Scholar 

  23. Schwarzl FR, Bree HW, Nederveen CJ, Schwippert GA, Struik LCE, Van der Wal CW (1966) Rheol Acta 5:270

    Article  CAS  Google Scholar 

  24. Hu AT (1994) Mech Prop Polym Compos 2:335

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Research and Development Section, Yunlin Branch, Taiwan Textile Research Institute of the Republic of China, Taiwan, for financially supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Fu Lien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, KJ., Wang, YZ., Peng, KC. et al. Preparation of silica aerogel/polyurethane composites for the application of thermal insulation. J Polym Res 21, 338 (2014). https://doi.org/10.1007/s10965-013-0338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0338-7

Keywords

Navigation