Skip to main content
Log in

Molecular design and pre-oxidation mechanism of acrylonitrile copolymer used as carbon fiber precursor

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In order to improve the pre-oxidation and spinnability of polyacrylonitrile (PAN) at the same time, a bifunctional comonomer 3-ammoniumcarboxylate-butenoic acid-methyl ester (ACBM) was designed and synthesized to prepare poly(acrylonitrile-co-3-ammoniumcarboxylate-butenoic acid-methyl ester) [P(AN-co-ACBM)] copolymers used as carbon fiber precursor instead of acrylonitrile terpolymers. The P(AN-co-ACBM) copolymers with different compositions were characterized by elemental analysis, Fourier transform infrared spectroscopy, X-ray diffraction and differential scanning calorimetry. Both the conversion of polymerization and molecular weight decease with the increasing of ACBM content in P(AN-co-ACBM) due to the larger molecular volume of ACBM than AN, and the monomer reactivity ratios study shows that ACBM possesses higher reactivity than AN. Two parameters \( {E}_s={A}_{1619c{m}^{-1}}/{A}_{2244c{m}^{-1}} \) and SI = (I 0 − I S )/I 0 were defined to evaluate the extent of pre-oxidation, and the activation energy (E a) of the cyclization was calculated by Kissinger and Ozawa methods. The results show that P(AN-co-ACBM) copolymers exhibit significantly improved pre-oxidation characteristics than PAN homopolymer, such as lower initiation temperature, larger extent of pre-oxidation and smaller E a of cyclization, which is attributed to the initiation of ACBM through ionic mechanism. In addition, the rheological analysis shows that the spinnability of P(AN-co-ACBM) copolymer is better that that of PAN, which is beneficial to preparing high performance carbon fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Scheme 4
Scheme 5
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shokuhfarl A, Sedghi A, Eslami Farsani R (2006) Mater Sci Tech 22(10):1235–1239

    Article  Google Scholar 

  2. Ouyang Q, Wang HJ, Cheng L, Sun YH (2007) J Polym Res 14:497–503

    Article  CAS  Google Scholar 

  3. Ji MX, Wang CG, Bai YJ, Yu MJ, Wang YX (2007) Polym Bull 59:527–536

    Article  CAS  Google Scholar 

  4. Yan X, Jie L, Liang JY (2013) Polym Degrad Stab 98:219–229

    Article  Google Scholar 

  5. Liu J, Yue ZR, Fong H (2009) Small 5(5):536–542

    Article  CAS  Google Scholar 

  6. Chen JC, Harrison (2002) Carbon 40:25–45

    Article  CAS  Google Scholar 

  7. Clarke AJ, Bailey JE (1973) Nature 243:146–150

    Article  CAS  Google Scholar 

  8. Mochida I, Yoon SH, Takano N, Fortin F, Korai Y, Yokogawa K (1996) Carbon 34:941–956

    Article  CAS  Google Scholar 

  9. Goodhew PJ, Clarke AJ, Bailey JE (1975) Mater Sci Eng 17:3–8

    Article  CAS  Google Scholar 

  10. Fitzer E (1989) Carbon 27:621–645

    Article  Google Scholar 

  11. Li W, Long DH (2012) J Mater Sci 47:919–928

    Article  Google Scholar 

  12. Lv MY, Ge HY, Chen J (2009) J Polym Res 16:513–517

    Article  CAS  Google Scholar 

  13. Zhang WX, Wang YZ, Sun CF (2007) J Polym Res 14:467–474

    Article  CAS  Google Scholar 

  14. Bahl OP, Manocha LM (1974) Carbon 12(4):417–423

    Article  CAS  Google Scholar 

  15. Bahl OP, Mathur RB (1979) Fiber Sci Technol 12(1):31–37

    Article  CAS  Google Scholar 

  16. Zhang WX, Liu J, Wu G (2003) Carbon 41(14):2805–2812

    Article  CAS  Google Scholar 

  17. Bahrami SH, Bajaj P, Sen K (2003) J Appl Polym Sci 89(7):1825–1837

    Article  CAS  Google Scholar 

  18. Bajaj P, Screekumar TV, Sen K (2002) J Appl Polym Sci 86(3):773–787

    Article  CAS  Google Scholar 

  19. Liu JJ, Ge HY, Wang CG (2006) J Appl Polym Sci 102:2175–2179

    Article  CAS  Google Scholar 

  20. Devasia R, Reghunadhan NCP, Sadhana R, Babu NS, Ninan KN (2006) J Appl Polym Sci 100:3055–3062

    Article  CAS  Google Scholar 

  21. Bajaj P, Screekumar TV, Sen K (2001) Polymer 42:1707–1718

    Article  CAS  Google Scholar 

  22. Chen GL, Ju AQ, Xu HY, Pan D (2010) Polym Mater Sci & Eng 26(2):146–148

    CAS  Google Scholar 

  23. Ouyang Q, Cheng L, Wang HJ, Li KX (2008) Polym Degrad Stab 93:1415–1422

    Article  CAS  Google Scholar 

  24. Jamil SNAM, Daik R, Ahmad I (2007) J Polym Res 14:379–385

    Article  CAS  Google Scholar 

  25. Ge HY, Liu JJ, Chen J, Wang CG (2007) J Polym Res 14:91–97

    Article  CAS  Google Scholar 

  26. Wang YX, Liu YL, Wang GL, Wang LM, Wang CG (2011) J Polym Res 18:1323–1329

    Article  CAS  Google Scholar 

  27. Cui CS, Yu LN, Wang CG (2010) J Appl Polym Sci 117:1596–1600

    CAS  Google Scholar 

  28. Devasia R, Reghunadhan Nair CP, Sivadasan P, Catherine BK, Ninan KN (2003) J Appl Polym Sci 88:915–920

    Article  CAS  Google Scholar 

  29. Tan LJ, Chen HF, Pan D, Pan N (2008) J Appl Polym Sci 110:1997–2000

    Article  CAS  Google Scholar 

  30. Gupta VB, Kumar S (1981) J Appl Polym Sci 26:1865–1876

    Article  CAS  Google Scholar 

  31. Fineman M, Ross SD (1950) J Polym Sci 5:259–262

    Article  CAS  Google Scholar 

  32. Kelen T, Tudos F (1975) J Macromol Sci Chem 9:1–9

    Article  Google Scholar 

  33. Zhao YQ, Wang CG, Wang YX, Zhu B (2009) J Appl Polym Sci 111:3163–3169

    Article  CAS  Google Scholar 

  34. Minagawa M, Miyano K, Takahashi M, Yoshii F (1988) Macromolecules 21:2387–2392

    Article  CAS  Google Scholar 

  35. Mittal J, Bahl OP, Mathur RB, Sandle NK (1994) Carbon 32:1133–1140

    Article  CAS  Google Scholar 

  36. Patron L, Bastianelli U (1974) Appl Polym Symp 25:105–112

    CAS  Google Scholar 

  37. Usami T, Itoh T, Ohtani H, Tsuge S (1990) Macromolecules 23:2460–2465

    Article  CAS  Google Scholar 

  38. Watt W (1972) Carbon 10:121–143

    Article  CAS  Google Scholar 

  39. Yu MJ, Bai YJ, Wang CG, Xu Y, Guo PA (2007) Mater Lett 61:2292–2297

    Article  CAS  Google Scholar 

  40. Bzell JP, Dumbleton JH (1971) Text Res J 41:196–203

    Article  Google Scholar 

  41. Devasia R, Reghunadhan Na CP, Ninan KN (2005) Polym Int 54:1110–1118

    Article  CAS  Google Scholar 

  42. Catta P, Sakata S, Garcia G, Zimmermann JP, Galembeck F, Galembeck F, Giovedi G (2007) J Therm Analy Calori 87(3):657–659

    Article  Google Scholar 

  43. Kissinger HE (1957) Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  44. Ozawa T (1965) Bull Chem Soc Jpn 38:1881–1882

    Article  CAS  Google Scholar 

  45. Chiu H, Wang J (1998) J Appl Polym Sci 70:1009–1016

    Article  CAS  Google Scholar 

  46. Wang Y, Wu DC (1997) J Appl Polym Sci 66:1389–1397

    Article  CAS  Google Scholar 

  47. Wu XP, Zhang XL, Sheng LH, Lu CX, He F, Ling LC (2007) Hi-Tech Fiber & Application 32(6):21–24

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this work from National Science Foundation of China (No 51073031), Important National Research Program “863” (No 2012AA030313-1) and the Fundamental Research Funds for the Central Universities (No JUSRP21003) was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anqi Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, A., Liu, Z., Luo, M. et al. Molecular design and pre-oxidation mechanism of acrylonitrile copolymer used as carbon fiber precursor. J Polym Res 20, 318 (2013). https://doi.org/10.1007/s10965-013-0318-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0318-y

Keywords

Navigation