Skip to main content
Log in

Self-assembly of multiwall carbon nanotubes on sulfonated poly (arylene ether ketone) as a proton exchange membrane

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Membranes of sulfonated poly (arylene ether ketone) containing carboxyl groups (SPAEK-C) are modified by alternating deposition of oppositely charged polyelectrolytes [carboxyl-functionalized multiwalled carbon nanotubes (C-MWCNTs) and chitosan (CS)] in order to reduce methanol crossover and maintain high proton conductivity in a direct methanol fuel cell (DMFC). Fourier transform infrared spectroscopy confirms that C-MWCNTs and CS are assembled in the multilayers. The morphology of membranes is studied by scanning electron microscopy. The results confirm the presence of thin C-MWCNTs/CS multilayers coated on the SPAEK-C membrane. The SPAEK-C-(C-MWCNTs/CS)n membranes maintain high proton conductivity values up to 0.058 Scm−1 at 25 °C and 0.24 Scm−1 at 80 °C, which are superior to previous layer-by-layer assembled polyelectrolyte systems. Meanwhile, the methanol permeability of these modified membranes is effectively reduced. The selectivity of SPAEK-C-(C-MWCNTs/CS)n is two orders of magnitude greater than that of Nafion® 117, making these modified membranes a good alternative to be used in DMFCs. The thermal stability, water uptake, swelling ratio and proton conductivity of SPAEK-C and SPAEK-C-(C-MWCNTs/CS)n membranes are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Costamagna P, Srinivasan S (2001) J Power Sources 102:253–269

    Article  CAS  Google Scholar 

  2. Wang Z, Chang H, Ni HZ, Wu QH, Zhang MY, Zhang HX (2011) J Appl Polym Sci 120:914–920

    Article  CAS  Google Scholar 

  3. Alberti G, Casciola M (2003) Annu Rev Mater Res 33:129–136

    Article  CAS  Google Scholar 

  4. Arico AS, Srinivasan S, Antonucci V (2001) Fuel Cells 1:133–161

    Article  CAS  Google Scholar 

  5. Qiao J, Hamaya T, Okada T (2005) Polymer 46:10809–10816

    Article  CAS  Google Scholar 

  6. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Chem Rev 104:4587–4612

    Article  CAS  Google Scholar 

  7. Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S (2005) Polymer 46:3257–3263

    Article  CAS  Google Scholar 

  8. Kim YS, Wang F, Hickner M, Zawodzinski TA, McGrath JE (2003) J Membr Sci 212:263–282

    Article  CAS  Google Scholar 

  9. Lin YH, Li HD, Liu CP, Xing W, Ji XL (2008) J Power Sources 185:904–908

    Article  CAS  Google Scholar 

  10. Nunes SP, Ruffmann B, Rikowski E, Vetter S, Richau K (2002) J Membr Sci 203:215–225

    Article  CAS  Google Scholar 

  11. Wang Z, Ren CL, Ni HZ, Gao HC, Chen HL, Xu JM, Zhang HX (2013) J Polym Res 20:108

    Article  Google Scholar 

  12. Chang JH, Park JH, Park GG, Kim CS, Park OO (2003) J Power Sources 124:18–25

    Article  CAS  Google Scholar 

  13. Huang SCJ, Artyukhin AB, Misra N, Martinez JA, Stroeve PA, Grigoropoulos CP, Ju JWW, Noy A (2010) Nano Lett 10:1812–1816

    Article  CAS  Google Scholar 

  14. Ajayan PM (1999) Chem Rev 99:1787–1800

    Article  CAS  Google Scholar 

  15. Sabzi RE, Rezapour K, Samadi N (2010) J Serb Chem Soc 75:537–549

    Article  CAS  Google Scholar 

  16. Holzinger M, Vostrowsky O, Hirsh A, Hennrich F, Kappes M, Weiss R, Jellen F (2001) Angew Chem Int Ed 40:4002–4005

    Article  CAS  Google Scholar 

  17. Zhu J, Yudasaka M, Zhang M, Kasuya D, Iijima S (2003) Nano Lett 3:1239–1243

    Article  CAS  Google Scholar 

  18. Riggs JE, Guo Z, Carroll DL, Sun YP (2000) J Am Chem Soc 122:5879–5880

    Article  CAS  Google Scholar 

  19. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  20. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE (2003) Nano Lett 3:1379–1382

    Article  CAS  Google Scholar 

  21. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Science 297:593–596

    Article  Google Scholar 

  22. Yurekli K, Mitchell CA, Krishnamoorti R (2004) J Am Chem Soc 126:9902–9903

    Article  CAS  Google Scholar 

  23. Matarredona O, Rhoads H, Li Z, Harwell JH, Balzano L, Resasco DE (2003) J Phys Chem B 107:13357–13367

    Article  CAS  Google Scholar 

  24. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Science 298:2361–2366

    Article  CAS  Google Scholar 

  25. Li NW, Zhang F, Wang JH, Li SH, Zhang SB (2009) Polymer 50:3600–3608

    Article  CAS  Google Scholar 

  26. Shim BS, Starkovich J, Kotov N (2006) Compos Sci Technol 6:1174–1181

    Article  Google Scholar 

  27. Landi BJ, Raffaelle RP, Heben MJ, Alleman JL, VanDerveer W, Gennett T (2002) Nano Lett 2:1329–1332

    Article  CAS  Google Scholar 

  28. Wang J, Musameh M, Lin Y (2003) J Am Chem Soc 125:2408–2409

    Article  CAS  Google Scholar 

  29. Lin HD, Zhao CJ, Cui ZM, Ma WJ, Fu TZ, Na H, Xing W (2009) J Power Sources 193:507–514

    Article  CAS  Google Scholar 

  30. Decher G (1997) Science 277:1232–1237

    Article  CAS  Google Scholar 

  31. Lin HD, Zhao CJ, Ma WJ, Li HT, Na H (2009) Int J Hydrog Energy 34:9795–9801

    Article  CAS  Google Scholar 

  32. Chen WF, Wu JS, Kuo PL (2008) Chem Mater 20:5756–5767

    Article  CAS  Google Scholar 

  33. Hu NT, Dang GD, Zhou HW, Jing J, Chen CH (2007) Mater Lett 61:5285–5287

    Article  CAS  Google Scholar 

  34. Thomassin JM, Kollar J, Caldarella G, Germain A, Jérôme R, Detrembleur C (2007) J Membr Sci 303:252–257

    Article  CAS  Google Scholar 

  35. Liu YH, Yi B, Shao ZG, Xing D, Zhang H (2006) Solid State Lett 9:A356–359

    Article  CAS  Google Scholar 

  36. Yılmaztürk S, Deligöz H, Yılmazo˘glu M, Damyan H, Öksüzömer F, Koc SN, Durmus A, Gürkaynak MA (2010) J Power Sources 195:703–709

    Article  Google Scholar 

  37. Pivovar BS, Wang YX, Cussler EL (1999) J Membr Sci 154:155–162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Grant No. 21104022) and Jilin University Basic Research Founding (No: 450060481017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengji Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H., Sun, W., Zhao, C. et al. Self-assembly of multiwall carbon nanotubes on sulfonated poly (arylene ether ketone) as a proton exchange membrane. J Polym Res 20, 306 (2013). https://doi.org/10.1007/s10965-013-0306-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0306-2

Keywords

Navigation