Skip to main content
Log in

A novel biocompatible magnetic iron oxide nanoparticles/hydrogel based on poly (acrylic acid) grafted onto starch for controlled drug release

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, a novel biocompatible magnetic iron oxide nanoparticles/hydrogel was synthesized based on the simultaneous formation of magnetic iron oxide nanoparticles (MION) and hydrogel based on poly (acrylic acid) grafted onto starch (PAA-g-starch). The structural, morphological and magnetic properties of the optimized sample were characterized by scanning electron microscopy with energy dispersive X-ray analysis (SEM–EDAX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM). In addition, the effect of external magnetic field (EMF), pH, and temperature on the swelling of the MION-PAA-g-starch hydrogel was studied. The results showed that the EMF reduced the swelling capacity of MION-PAA-g-starch hydrogel. Moreover, the in vitro release of deferasirox was studied in pH = 2 and 7 under EMF. The release curves were nicely fitted by the Korsemeyer–Peppas equation and the release followed by non-Fickian diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aydın C, Abd El-sadek MS, Zheng K, Yahia IS, Yakuphanoglu F (2013) Opt Laser Technol 48:447

    Article  Google Scholar 

  2. Chen Y, Zou M, Wang D, Li Y, Xue Q, Xie M, Qi C (2013) Biosens Bioelectron 43:6

    Article  CAS  Google Scholar 

  3. Minard KR, Littke MH, Wang W, Xiong Y, Teeguarden JG, Thrall BD (2013) Biosens Bioelectron 43:88

    Article  CAS  Google Scholar 

  4. Chan T, Gu F (2013) Biosens Bioelectron 42:12

    Article  CAS  Google Scholar 

  5. Khurshid H, Hadjipanayis CG, Chen H, Li W, Mao H, Machaidze R, Tzitzios V, Hadjipanayis GC (2013) J Magn Magn Mater 331:17

    Article  CAS  Google Scholar 

  6. Kobori H, Takata N, Fukutome N, Yamasaki A, Sugimura A, Taniguchi T, Horie T, Naitoh Y, Shimizu T (2013) J Magn Magn Mater 331:88

    Article  CAS  Google Scholar 

  7. Monson TC, Venturini EL, Petkov V, Ren Y, Lavin JM, Huber DL (2013) J Magn Magn Mater 331:156

    Article  CAS  Google Scholar 

  8. Riegler J, Liew A, Hynes SO, Ortega D, O’Brien T, Day RM, Richards T, Sharif F, Pankhurst QA, Lythgoe MF (2013) Biomaterials 34:1987

    Article  CAS  Google Scholar 

  9. Lee S, Jeong J, Shin S, Kim J (2004) J Kim J Magn Magn Mater 282:147

    Article  CAS  Google Scholar 

  10. Jiang W, Yang HC, Yang SY, Horng HE, Hung JC, Chen YC, Hong C (2004) J Magn Magn Mater 283:210

    Article  CAS  Google Scholar 

  11. Zhu HY, Fu YQ, Jiang R, Yao J, Xiao L, Zeng GM (2012) Bioresour Technol 105:24

    Article  CAS  Google Scholar 

  12. Liu H, Wang C, Gao Q, Liu X, Tong Z (2010) Acta Biomater 6:275

    Article  CAS  Google Scholar 

  13. Liang Y, Zhang L, Jiang W, Li W (2007) Chem Phys Chem 8:2367

    Article  CAS  Google Scholar 

  14. Satarkar NS, Hilt JZ, Controlled J (2008) Release 130:246

    Article  CAS  Google Scholar 

  15. Olsson RT, Samir MASA, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Nat Nanotechnol 5:584

    Article  CAS  Google Scholar 

  16. Fuhrer R, Athanassiou EK, Luechinger NA, Stark WJ (2009) Small 5:383

    Article  CAS  Google Scholar 

  17. Zhou L, He B, Zhang F (2012) ACS Appl Mater Interfaces 4:192

    Article  CAS  Google Scholar 

  18. Guo J, Jin Y, Yang X, Yu S, Yin S, Qi J (2013) Food Hydrocoll 31:220

    Article  CAS  Google Scholar 

  19. Luo Y, Teng Z, Wang X, Wang Q (2013) Food Hydrocoll 31:332

    Article  CAS  Google Scholar 

  20. Matalanis A, McClements DJ (2013) Food Hydrocoll 31:15

    Article  CAS  Google Scholar 

  21. Wang R, Li Y (2013) Biosens Bioelectron 42:148

    Article  CAS  Google Scholar 

  22. Jin M, Zhong Q, Food J (2013) Eng 115:33

    CAS  Google Scholar 

  23. Remya NS, Nair PD (2013) Mater Sci Eng C 33:575

    Article  CAS  Google Scholar 

  24. Bueno VB, Bentini R, Catalani LH, Petri DFS (2013) Carbohydr Polym 92:1091

    Article  CAS  Google Scholar 

  25. Sun X, Wang H, Jing Z, Mohanathas R (2013) Carbohydr Polym 92:1357

    Article  CAS  Google Scholar 

  26. Cheng Y, Yang S, Liu C, Gefen A, Lin F (2013) Carbohydr Polym 92:1512

    Article  CAS  Google Scholar 

  27. Annapoorna M, Sudheesh Kumar PT, Lakshman LR, Lakshmanan V, Nair SV, Jayakumar R (2013) Carbohydr Polym 92:1561

    Article  CAS  Google Scholar 

  28. Pei Y, Yang J, Liu P, Xu M, Zhang X, Zhang L (2013) Carbohydr Polym 92:1752

    Article  CAS  Google Scholar 

  29. Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Raju KM (2013) Carbohydr Polym 92:2193

    Article  CAS  Google Scholar 

  30. Hill RJ, Li F (2013) Chem Eng Sci 89:1

    Article  Google Scholar 

  31. Zhong K, Lin Z, Zheng X, Jiang G, Fang Y, Mao X, Liao Z (2013) Carbohydr Polym 92:1367

    Article  CAS  Google Scholar 

  32. Sovilj V, Milanović J, Petrović L (2013) Food Hydrocoll 32:20

    Article  CAS  Google Scholar 

  33. Schirmer M, Höchstötter A, Jekle M, Arendt E, Becker T (2013) Food Hydrocoll 32:52

    Article  CAS  Google Scholar 

  34. Chantaro P, Pongsawatmanit R, Nishinari K (2013) Food Hydrocoll 31:183

    Article  CAS  Google Scholar 

  35. Man J, Yang Y, Zhang C, Zhang F, Wang Y, Gu M, Liu Q, Wei C (2013) Food Hydrocoll 31:195

    Article  CAS  Google Scholar 

  36. Hebeish A, El-Rafie MH, Higazy A, Ramadan MA (1992) Starch/Staerke 44:101

    Article  CAS  Google Scholar 

  37. Wu C (2005) Macromol Biosci 5:352

    Article  CAS  Google Scholar 

  38. Fanta GF, Swanson CL, Doane WM (1990) J Appl Polym Sci 40:811

    Article  CAS  Google Scholar 

  39. Al E, Güçlü G, İyim TB, Emik S, Özgümüş S (2008) J Appl Polym Sci 109:16

    Article  CAS  Google Scholar 

  40. Fanta GF, Swanson CL, Shogren RL (1992) J Appl Polym Sci 44:2037

    Article  CAS  Google Scholar 

  41. Yan Q, Zhang W, Lu G, Su X, Ge C (2005) Chem Eur J 11:6609

    Article  CAS  Google Scholar 

  42. Bardajee GR, Hooshyar Z (2013) J Polym Res 20:67

    Article  Google Scholar 

  43. Bardajee GR, Hooshyar Z, Rezanezhad H, Guerin G (2012) ACS Appl Mater Interfaces 4:3517

    Article  Google Scholar 

  44. Liu S, Zhang L, Zhou J, Xiang J, Sun J, Fiberlike GJ (2008) Chem Mater 20:3623

    Article  CAS  Google Scholar 

  45. Samba Sivudu K, Rhee KY (2009) Colloids Surf A Physicochem Eng Asp 349:29

    Article  Google Scholar 

  46. Chenb R, Chenb Q, Huoa D, Dingc Y, Hua Y, Jiangb X (2012) Colloids Surf B Biointerfaces 97:132

    Article  Google Scholar 

  47. Pourjavadi A, Bardajee GR, Soleyman R (2009) J Appl Polym Sci 112:2625

    Article  CAS  Google Scholar 

  48. Li B, Jia D, Zhou Y, Hu Q, Cai W (2006) J Magn Magn Mater 306:223

    Article  CAS  Google Scholar 

  49. Honga RY, Pana TT, Hana YP, Lib HZ, Dingc J, Han S (2007) J Magn Magn Mater 310:37

    Article  Google Scholar 

  50. Cai J, Guo J, Ji M, Yang W, Wang C, Fu S (2007) Colloid Polym Sci 285:1607

    Article  CAS  Google Scholar 

  51. Liu T, Hu S, Liu T, Liu D, Chen S (2006) Langmuir 22:5974

    Article  CAS  Google Scholar 

  52. Zrinyi M (2000) Colloid Polym Sci 278:98

    Article  CAS  Google Scholar 

  53. Liua T, Hua S, Liua K, Liub D, Chen S (2006) J Magn Magn Mater 304:e397

    Article  Google Scholar 

  54. Khan A, El-Toni AM, Alhoshan M (2012) Mater Lett 89:12

    Article  CAS  Google Scholar 

  55. Purushotham S, Chang PEJ, Rumpel H, Kee IHC, Ng RTH, Chow PKH, Tan CK, Ramanujan RV (2009) Nanotechnol 20:305101

    Article  CAS  Google Scholar 

  56. Wang Y, Dong A, Yuan Z, Chen D (2012) Colloids Surf A Physicochem Eng Asp 415:68

    Article  CAS  Google Scholar 

  57. Nirogi R, Ajjala DR, Kandikere V, Aleti R, Srikakolapu SR, Vurimindi H (2012) J Chromatogr B 907:65

    Article  CAS  Google Scholar 

  58. Lal A, Porter J, Sweeters N, Ng V, Evans P, Neumayr L, Kurio G, Harmatz P, Vichinsky E (2013) Blood Cell Mol Dis 50:99

    Article  CAS  Google Scholar 

  59. Kielar F, Wang Q, Boyle PD, Franz KJ (2012) Inorg Chim Acta 393:294

    Article  CAS  Google Scholar 

  60. Dash S, Narasimha Murthy P, Nath L, Chowdhury P (2010) Acta Pol Pharm Drug Res 67:217

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the PNU and INSF for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Rezanejade Bardajee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20742 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardajee, G.R., Hooshyar, Z. A novel biocompatible magnetic iron oxide nanoparticles/hydrogel based on poly (acrylic acid) grafted onto starch for controlled drug release. J Polym Res 20, 298 (2013). https://doi.org/10.1007/s10965-013-0298-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0298-y

Keywords

Navigation