Skip to main content
Log in

Preparation and characterization of polyamide composites with modified graphite powders

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Although Graphite powders (GPs) are used widely as fillers to improve the electrical, thermal and mechanical properties of polymers, their poor affinity with polymers has limited their industrial applications in many fields. In the present work, GPs were modified by a proposed chemical method to improve their affinity with polyamide 6 (PA6). The GPs was first oxidized with hydrogen peroxide (GPs-OH) and then modified with hexmethylene diisocryanate (GPs-NH2). The X-ray photoelectron spectroscopy (XPS), elemental analysis, thermogravimetric analysis (TGA), X-ray diffraction (XRD) and electrical properties results proved the successful modification of GPs by the proposed method. The composites of GPs and PA6 (GPs/PA), GPs-OH and PA6 (GPs-OH/PA) and GPs-NH2 and PA6 (GPs-NH2/PA) were prepared via the twin-screw extruding and injection molding processes. The scanning electron microscopy (SEM) images and the optical microscopy images of composites showed good compatibility between modified GPs and PA6. The test results of tensile strength and bending strength suggested that the modified GPs can enhance the mechanical properties of PA6, which will increase its application in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mather PJ, Thomask M (1997) Carbon black/high density polyethylene conducting composite materials. J Mater Sci 32:401–407

    Article  CAS  Google Scholar 

  2. Wakeman MD, Zingraff L, Bourban P-E, Manson J-AE, Blanchard P (2006) Stamp forming of carbon fiber/PA12 composites-A comparison of a reactive impregnation process and a commingled yarn system. Compos Sci Technol 66:19–35

    Article  CAS  Google Scholar 

  3. Kelly BT (1981) Physics of graphite. Applied Science Publishers, London, pp 1–33

    Google Scholar 

  4. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670

    Article  CAS  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV, Dubonos SV, Zhang Y, Jiang D (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  6. Priyantha N, Jayaweera P, Sanjurjo A, Lau K, Lu F, Krist K (2003) Corrosion- resistant metallic coatings for applications in highly aggressive environments. Surf Coat Technol 163–164:31–36

    Article  Google Scholar 

  7. Wang QL, Hu YF, He M (2008) Effect of filler on the self-lubrication performance of graphite antimony composites. J China Univ Mining Technol 18:0441–0443

    Article  Google Scholar 

  8. Cai YZ, Fan SW, Liu HY, Zhang LT, Cheng LF, Dong BX, Jiang J (2009) Microstructures and improved wear resistance of 3D needled C/SiC composites with graphite filler. Compos Sci Technol 69:2447–2453

    Article  CAS  Google Scholar 

  9. Rupnowski P, Gentz M, Kumosa M (2006) Mechanical response of a unidirectional graphite fiber/polyimide composite as a function of temperature. Compos Sci Technol 66:1045–1055

    Article  CAS  Google Scholar 

  10. Wang SZ, Adanur S, Jang BZ (1997) Mechanical and thermo-mechanical failure mechanism analysis of fiber/filler reinforced phenolic matrix composites. Compos Part B 28B:215–231

    Article  CAS  Google Scholar 

  11. Gentz M, Benedikt B, Sutter JK, Kumosa M (2004) Residual stresses in unidirectional graphite fiber/polyimide composites as a function of aging. Compos Sci Technol 64:1671–1677

    Article  CAS  Google Scholar 

  12. Suresha B, Siddaramaiah SKS, Sampath Kumaran P (2009) Investigations on the influence of graphite filler on dry sliding wear and abrasive wear behaviour of carbon fabric reinforced epoxy composites. Wear 267:1405–1414

    Article  CAS  Google Scholar 

  13. Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67:2045–2051

    Article  CAS  Google Scholar 

  14. Bryan D, Khalid L (2007) Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45:1727–1734

    Article  Google Scholar 

  15. Zheng G, Wu J, Wang W, Pan C (2004) Characterizations of expanded graphite/polymer composites prepared by in situ polymerization. Carbon 42:2839–2847

    Article  CAS  Google Scholar 

  16. Sichel EK (1982) Carbon Black Polymer Composites. Marcel Dekker, New York

    Google Scholar 

  17. Buqa H, Grogger C, Santis Alvarez MV, Besenhard JO, Winter M (2001) Surface modification of graphite anodes by combination of high temperature gas treatment and silylation in nonaqueous solution. J Power Sources 97–98:126–128

    Article  Google Scholar 

  18. Hu HW, Chen GH, Fang M, Zhao WF (2009) Modification of graphite oxide nanoparticles prepared via electrochemically oxidizing method. Synth Met 159:1505–1507

    Article  CAS  Google Scholar 

  19. Saraswati ET, Matsuda T, Ogino A, Nagatsu M (2011) Surface modification of graphite encapsulated iron nanoparticles by plasma processing. Diam Relat Mater 20:359–363

    Article  CAS  Google Scholar 

  20. Horozova E, Dodevska T, Dimcheva N (2009) Modified graphites: application to the development of enzyme-based amperometric biosensors. Bioelectrochemistry 74:260–264

    Article  CAS  Google Scholar 

  21. Kaşgöz A, Akın D, Durmus A, Ercan N, Öksüzömer F, Kaşgöz A (2013) Effects of various polyolefin copolymers on the interfacial interaction, microstructure and physical properties of cyclic olefin copolymer(COC)/graphite composites. J Polym Res 20:194–205

    Article  Google Scholar 

  22. Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46:806–817

    Article  CAS  Google Scholar 

  23. Wu XL, Qiu JH, Liu P, Sakai E, Lei L (2013) Polystyrene grafted carbon black synthesis via in situ solution radical polymerization in ionic liquid. J Polym Res 20:167–173

    Article  Google Scholar 

  24. Suresha B, Ravi Kumar BN, Venkataramareddy M, Jayaraju T (2010) Role of micro/nano fillers on mechanical and tribological properties of polyamide66/polypropylene composites. Mater Des 31:1993–2000

    Article  CAS  Google Scholar 

  25. Araujo JR, Adamo CB, De Paoli M-A (2011) Conductive composites of polyamide-6 with polyaniline coated vegetal fiber. Chem Eng J 174:425–431

    Article  CAS  Google Scholar 

  26. Rajesh JJ, Bijwe J, Venkataraman B, Tewari US (2004) Effect of impinging velocity on the erosive wear behaviour of polyamides. Tribol Int 37:219–226

    Article  CAS  Google Scholar 

  27. Rajesh JJ, Bijwe J, Tewari US, Venkataraman B (2001) Erosive wear behavior of various polyamides. Wear 249:702–714

    Article  CAS  Google Scholar 

  28. Rajesh JJ, Bijwe J, Tewari US (2002) Abrasive wear performance of various polyamides. Wear 252:769–776

    Article  CAS  Google Scholar 

  29. Pinto G, Jimmenez-Martin A (2001) Conducting aluminum-filled nylon 6 composites. Polym Compos 22:65–70

    Article  CAS  Google Scholar 

  30. Pan YX, Yu ZZ, Ou YC, Hu GH (2000) A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization. J Polym Sci B 38:1626–1633

    Article  CAS  Google Scholar 

  31. Liu Y, Yang GS (2010) Non-isothermal crystallization kinetics of polyamide-6/graphite oxide nanocomposites. Thermochim Acta 500:13–20

    Article  CAS  Google Scholar 

  32. Uhl FM, Yao Q, Nakajima H, Manias E, Wilkie AC (2005) Expandable graphite/polyamide-6 nanocomposites. Polym Degrad Stab 89:70–84

    Article  CAS  Google Scholar 

  33. Zhang FM, Mihoc C, Ahmed F, Lathe C, Burkel E (2011) Thermal stability of carbon nanotubes, fullerene and graphite under spark plasma sintering. Chem Phys Lett 510:109–114

    Article  CAS  Google Scholar 

  34. Wu XL, Liu P (2010) Facile preparation and characterization of graphene nanosheets/polystyrene composites. Macromol Res 18:1008–1012

    Article  CAS  Google Scholar 

  35. Isitman NA, Aykol M, Kaynak C (2010) Nanoclay assisted strengthening of the fiber/matrix interface in functionally filled polyamide 6 composites. Compos Struct 92:2181–2186

    Article  Google Scholar 

  36. Lincoln DM, Vaia RA, Wang ZG, Hsiao BS (2001) Temperature dependence of polymer crystalline morphology in nylon 6/montmorillonite nanocomposites. Polymer 42:9975–9985

    Article  CAS  Google Scholar 

  37. Ramesh C, Gowd EB (2001) High-temperature X-ray diffraction studies on the crystalline transitions in the α- and γ-forms of nylon-6. Macromolecules 34:3308–3313. doi:10.1021/ma0006979

    Article  CAS  Google Scholar 

  38. Murthy NS (2006) Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. J Polym Sci Polym Phys 44:1763–1782

    Article  CAS  Google Scholar 

  39. Kosanetzky J, Knoerr B, Harding G, Neitzel U (1987) X ray diffraction measurements of some plastic materials and body tissues. Med Phys 14:526–532

    Article  CAS  Google Scholar 

  40. Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45:1686–1695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Qiu, J., Liu, P. et al. Preparation and characterization of polyamide composites with modified graphite powders. J Polym Res 20, 284 (2013). https://doi.org/10.1007/s10965-013-0284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0284-4

Keywords

Navigation