Skip to main content
Log in

Kinetic investigation of the reversible addition-fragmentation chain transfer polymerization of 1,3-butadiene

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Reversible addition-fragmentation chain transfer (RAFT) polymerization of 1,3-butadiene using a trithiocarbonate chain transfer agent, S-1-dodecyl-S′-(r,r′-dimethyl-r″-acetic acid)trithiocarbonate (DDMAT), was investigated. For the first time, comprehensive kinetic study of solution RAFT polymerization of 1,3-butadiene is reported. Effect of some factors such as RAFT agent and initiator concentration and initial molar ratio of monomer to both RAFT agent and initiator on the rate of polymerization and molecular weight distribution (MWD) were examined experimentally and discussed quantitatively. The validity of quasi-steady state approximation (QSSA) was shown and the rate of polymerization’s equation was obtained. Good compatibility with the experimental and theoretical values of molecular weights was obtained. Also, polybutadiene samples with narrow molecular weight distribution were synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Holden G (2002) Thermoplastic elastomers. Encyclopedia of polymer science and technology. Wiley, New York

    Google Scholar 

  2. Hua J, Xu H, Geng J, Deng Z, Xu L, Yu Y (2011) J Polym Res 18:41–48

    Article  CAS  Google Scholar 

  3. Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Najafi M, Roghani-Mamaqani H (2012) J Polym Res 19:9793

    Article  Google Scholar 

  4. Roghani-Mamaqani H, Haddadi-Asl V, Salami-Kalajahi M (2012) Polym Rev 52:142–188

    Article  CAS  Google Scholar 

  5. Khezri K, Haddadi-Asl V, Roghani-Mamaqani H, Salami-Kalajahi M (2012) J Polym Res 19:9868

    Article  Google Scholar 

  6. Rahimi-Razin S, Salami-Kalajahi M, Haddadi-Asl V, Roghani-Mamaqani H (2012) J Polym Res 19:9954

    Article  Google Scholar 

  7. Le TPT, Moad G, Rizzardo E, Thang SH (1998) Polymerization with Living Characteristics. Organization WIP, editor, In

    Google Scholar 

  8. Lebreton P, Ameduri B, Boutevin B, Corpart J-M (2002) Macromol Chem Phys 203:522–537

    Article  CAS  Google Scholar 

  9. Mahanthappa MK, Bates FS, Hillmyer MA (2005) Macromolecules 38:7890–7894

    Article  CAS  Google Scholar 

  10. Kaiser A, Brandau S, Klimpel M, Barner-Kowollik C (2010) Macromolecular Rapid Communications 31:1616–1621

    Article  CAS  Google Scholar 

  11. Dürr CJ, Emmerling SGJ, Kaiser A, Brandau S, Habicht AKT, Klimpel M, Barner-Kowollik C (2011) J Polymer Sci, Part A: Polymer Chem 50:174–180

    Article  Google Scholar 

  12. Dürr CJ, Emmerling SGJ, Lederhose P, Kaiser A, Brandau S, Klimpel M, Barner-Kowollik C (2012) Polym Chem 3:1048–1060

    Article  Google Scholar 

  13. Dürr CJ, Hlalele L, Kaiser A, Brandau S, Barner-Kowollik C (2013) Macromolecules 46:49–62

    Article  Google Scholar 

  14. Bar-Nes G, Hall R, Sharma V, Gaborieau M, Lucas D, Castignolles P, Gilbert RG (2009) Eur Polymer J 45:3149–3163

    Article  CAS  Google Scholar 

  15. Wei R, Luo Y, Li Z (2010) Polymer 51:3879–3886

    Article  CAS  Google Scholar 

  16. Wei R, Luo Y, Xu P (2011) J Polymer Sci, Part A: Polymer Chem 49:2980–2989

    Article  CAS  Google Scholar 

  17. Wei R, Luo Y, Zeng W, Wang F, Xu S (2012) Industrial & Engineering Chemistry Research 51:15530–15535

    Article  CAS  Google Scholar 

  18. Yu Y, Zhang Q, Zhan X, Chen F (2013) J Appl Polym Sci 127:2557–2565

    Article  CAS  Google Scholar 

  19. Lai JT, Filla D, Shea R (2002) Macromolecules 35:6754–6756

    Article  CAS  Google Scholar 

  20. Grubisic Z, Rempp P, Benoit H (1967) Journal of Polymer Science Part B: Polymer Letters 5:753–759

    Article  Google Scholar 

  21. Xu Z, Song M, Hadjichristidis N, Fetters LJ (1981) Macromolecules 14:1591–1594

    Article  CAS  Google Scholar 

  22. Moad G, Rizzardo E, Thang SH (2005) Aust J Chem 58:379–410

    Article  CAS  Google Scholar 

  23. Deibert S, Bandermann F, Schweer J, Sarnecki J (1992) Die Makromolekulare Chemie. Rapid Communications 13:351–355

    Article  CAS  Google Scholar 

  24. Brandrup J, Immergut EH, Grulke EA (2004) Polymer handbook, 4th edition. Wiley, New York, p II/79

    Google Scholar 

  25. Konkolewicz D, Hawkett BS, Gray-Weale A, Perrier S (2008) Macromolecules 41:6400–6412

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge Research Institute of Petroleum Industry (RIPI) for their financial and technical support of this work. We thank Dr. M. Teymuri (Iran polymer and petrochemical institute, IPPI), M. sarsabili (Semnan university) and A. Asfadeh (Amirkabir university of technology) for helping in synthesis of DDMAT, M. Ebrahimi and A. Ostovari (RIPI) for installation Buchi Glas Uster AG reactor system, M. Bahari (RIPI) for recording 1H NMR spectra and Mrs. Fathollahi (IPPI) for GPC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Haddadi-Asl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganjeh-Anzabi, P., Haddadi-Asl, V., Salami-Kalajahi, M. et al. Kinetic investigation of the reversible addition-fragmentation chain transfer polymerization of 1,3-butadiene. J Polym Res 20, 248 (2013). https://doi.org/10.1007/s10965-013-0248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0248-8

Keywords

Navigation