Skip to main content
Log in

Radical polymerization of ethyl methacrylate (EMA) in the presence of fullerene (C60) using triphenylbismuthonium ylide as an initiator and characterization of the synthesized polymers (C60-EMA)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Radical polymerization of ethyl methacrylate (EMA) in the presence of fullerene (C60) has been carried out at 70 °C ± 1 °C in dioxan solvent under nitrogen atmosphere using triphenylbismuthonium ylide (abbreviated as Ylide) as an initiator. The polymerization reaction follows ideal kinetics: Rp ∝ [Ylide]0.498[C60]−1.03[EMA]1.01. The rate of polymerization varies directly with the concentration of initiator and monomer. However, the variation of rate of polymerization is observed to be inversed with increasing concentration of fullerene. This is attributed to the fact that fullerene acts as a strong radical scavenger. Again the rate of polymerization depends on the nature of the acrylate monomers. It decreases with the increase steric hindrance associated with the bulkiness of the pendant alkyl groups: MMA > EMA > BMA. The activation energy of EMA polymerization in the presence of fullerene is 63.18 KJ mol-1 which is found to be higher than that of the polymerization without fullerene (46.91 KJ mol−1). The fullerene containing polymers (C60-EMA) thus formed were characterized by FTIR, 1H-NMR, 13C-NMR, UV–vis and TGA/DSC analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Lanzi M, Paganin L, Errani F (2012) Polymer 58:2134–2145

    Article  Google Scholar 

  2. Klocek J, Henkel K, Kolanek K, Broczkowska K, Schmeisser D, Miller M, Zschech E (2012) Thin Solid films 520:2498–2504

    Article  CAS  Google Scholar 

  3. Reuther U, Hirsch A (2000) Carbon 38:1539–1549

    Article  CAS  Google Scholar 

  4. Bosi S, Da Ros T, Spalluto G, Prato M (2003) Eur J Med Chem 38:913–923

    Article  CAS  Google Scholar 

  5. Jakubov TS, Mainwaring DE (2009) Procedia Chem 1:1584–1589

    Article  CAS  Google Scholar 

  6. Mackiewicz N, Bark T, Cao B, Delaire JA, Riehl D, Ling WI, Foillard S, Doris E (2011) Carbon 49:3998–4003

    Article  CAS  Google Scholar 

  7. Chen Y, Zhao Y, Cai RF, Huang ZE, Xiao LX (1998) J Polym Sci B: Polym Phys 36:2653

    Article  CAS  Google Scholar 

  8. Wang ZY, Kuang L, Meng XS, Gao JP (1998) Macromolecules 31:5556

    Article  CAS  Google Scholar 

  9. Ogaswara T, Ishida Y, Kasai T (2009) Composites Sci Technol 69:2002–2007

    Article  Google Scholar 

  10. Schmaltz B, Mathis C, Brinkmann M (2009) Polymer 50:966–972

    Article  CAS  Google Scholar 

  11. Singh R, Srivastava D, Upadhyay SK (2012) Des Mon Pol 15:311–328

    Article  CAS  Google Scholar 

  12. Wang C, Guo Z-X, Fu S, Wu W, Zhu D (2004) Prog Polym Sci 29:1079–1141

    Article  Google Scholar 

  13. Giacalone F, Martin M (2006) Chem Rev 106:5136–5190

    Article  CAS  Google Scholar 

  14. Singh R, Srivastava D, Upadhyay SK (2011) J Macromol Sci Part A: Pure Appl Chem 48:595–606

    Article  CAS  Google Scholar 

  15. Ford WT, Nishioka T, Mc Cleskey SC (2000) Macromolecules 33:2413–2423

    Article  CAS  Google Scholar 

  16. Shalabi AS, Aal SA, Assem MM (2012) Nano Energy 1:608–623

    Article  CAS  Google Scholar 

  17. Ltaief A, Bouazizi A, Davenas J, Alcouffe P, Chhabane RB (2006) Thin Solid Films 511–512:498–505

    Article  Google Scholar 

  18. Singh R, Goswami T (2008) J Organomet Chem 693:2021–2032

    Article  CAS  Google Scholar 

  19. Parveen S, Misra R, Sahoo SK (2012) Nanom: Nanotech, Biol Med 8:147–166

    Article  CAS  Google Scholar 

  20. Katiyar R, Bag DS, Nigam I (2010) J Macromol Sci, Part A: Pure Appl Chem 47:468–477

    Article  CAS  Google Scholar 

  21. Katiyar R, Bag DS, Nigam I (2011) Int J Chem Kinet 43:608–619

    Article  CAS  Google Scholar 

  22. Vogel, A. I. A Texbook of Practical Organic Chemistry, 5th Edn. (Longman London), 1989, p 397.

  23. Lloyd D, Glidewell C (1988) Synthesis 319

  24. Odian G (1991) Principles of Polymerization, 3rd edn. Wiley Interscience, Hoboken

    Google Scholar 

  25. Singh R, Srivastava D, Upadhyay SK (2012) Polym Sci Series B 54:88–93

    Article  CAS  Google Scholar 

  26. Zeynalov EB, Allen NS, Salmanova NI (2009) Polym Degrad Stab 94:1183–1189

    Article  CAS  Google Scholar 

  27. Cao T, Webber SE (1996) Macromolecules 29:3826–3830

    Article  CAS  Google Scholar 

  28. Atwood JL, Koutsantonis GA, Ratson CL (1994) Nature 368:229–230

    Article  CAS  Google Scholar 

  29. Kuzmany H, Winkler R, Pichler R (1995) J Phys Condens Matter 7:6601

    Article  CAS  Google Scholar 

  30. Kuzmany H, Winter J (2000) Vibrational properties of fullerenes and fullerides. In: Andreoni W (ed) The physics of fullerenes and related materials. World Scientific, Singapore, p 208

    Google Scholar 

  31. Sun B, Lin Y, Wu P (2007) Appl Spectrosc 61:765

    Article  CAS  Google Scholar 

  32. Sun YP, Bunker GE, Lawson CE, Ma B (1996) Macromolecules 28:8441–8448

    Article  Google Scholar 

  33. Cao T, Webber SE (1995) Macromolecules 28:3741–3743

    Article  CAS  Google Scholar 

  34. Gallagher PK, Zhong ZJ (1992) Thermal Anal Cal 38:2247–2255

    Article  CAS  Google Scholar 

  35. Zheng J, Goh SH, Lee SY (1997) Polym Bull 39:79–84

    Article  CAS  Google Scholar 

  36. Nourdine A, Perrin L, Bettignies R, Guillerez S, Flandin L, Alberola N (2011) Polymer 52:6066–6073

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the facility and support provided by the Director of H.B.T.I. Kanpur, and the Director of DMSRDE Kanpur to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyendu S Bag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katiyar, R., Bag, D.S. & Nigam, I. Radical polymerization of ethyl methacrylate (EMA) in the presence of fullerene (C60) using triphenylbismuthonium ylide as an initiator and characterization of the synthesized polymers (C60-EMA). J Polym Res 20, 243 (2013). https://doi.org/10.1007/s10965-013-0243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0243-0

Keywords

Navigation