Skip to main content
Log in

5-(methacrylamido)tetrazole and vinyl triazole based copolymers as novel anhydrous proton conducting membranes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymer electrolytes that have ability to conduct protons at high temperatures have become crucial as the membranes for proton exchange membrane fuel cells (PEMFC) in anhydrous systems. In this work, a novel copolymer based on 5-(methacrylamido)tetrazole (MTet) and vinyl triazole (VTri) was prepared by conventional free-radical copolymerization at several monomer feed ratios to attain poly(VTri-co-MTet) copolymers. The copolymer samples were doped with H3PO4 at several stoichiometric ratios to obtain proton conductive copolymer electrolytes. The obtained membranes were analyzed by FTIR, 1H-NMR, Thermogravimetric Analysis (TGA), Differantial Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Cyclic Voltammetry (CV), and Impedance Spectroscopy. The compositions and molecular weights of copolymers were determined via 1H-NMR analysis. TGA demonstrated that the copolymers are thermally stable up to approximately 220 °C. DSC results illustrated both the homogeneity of the materials by the appearance of a single Tg and the plasticizing effect of the dopant. SEM analysis provided further evidence for the homogeneity of the membranes. CV results demonstrated that the stability window of P(VTri-co-MTet) is 3 V. The copolymer electrolytes, P(VTri-co-MTet)2:1 X = 2, P(VTri-co-MTet)1:1 X = 2, and P(VTri-co-MTet)1:2 X = 2 showed maximum proton conductivities of 0.012 Scm−1, 0.014 Scm−1 and 0.016 Scm−1, respectively, at 150 °C and anhydrous conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Celik SU, Bozkurt A (2013) J Poly Res 20(63):1–6

    CAS  Google Scholar 

  2. Celik SU, Bozkurt A, Hosseini SS (2012) Prog Polym Sci 37:1265–1291

    Article  CAS  Google Scholar 

  3. Golcuk S, Celik SU, Muftuoglu AE, Bozkurt A (2013) J Poly Res 20 (5):44:1–10

    Google Scholar 

  4. Schuster MFH, Meyer WH, Schuster M (2004) Kreuer KD Chem Mater 16:329–337

    Article  CAS  Google Scholar 

  5. Pu HT, Meyer WH, Wegner G (2001) Macromol Chem Phys 2021:478–1482

    Google Scholar 

  6. Liu Y, Yu Q, Wu Y (2007) J Phys Chem Solids 68:201–204

    Article  CAS  Google Scholar 

  7. Boroglu MS, Celik SU, Bozkurt A, Boz I (2011) J Membr Sci 375:157–164

    Article  CAS  Google Scholar 

  8. Pu HT, Liu QZ, Liu GH (2004) J Membr Sci 241:169–175

    Article  CAS  Google Scholar 

  9. Kim JD, Mori T, Hayashi S, Honma IJ (2007) Electrochem Soc 154:A290–A294

    Article  CAS  Google Scholar 

  10. Persson JC, Jannasch P (2005) Macromolecules 38:3283–3289

    Article  CAS  Google Scholar 

  11. Guhathakurta S, Min K (2009) Polymer 50:1034–1045

    Article  CAS  Google Scholar 

  12. Ozden S, Celik SU, Bozkurt A (2010) J Polym Sci Part A: Polym Chem 48:4974–4980

    Article  CAS  Google Scholar 

  13. Celik SU, Akbey U, Bozkurt A, Graf R, Spiess HW (2008) Macrom Chem Phys 209:593–603

    Article  CAS  Google Scholar 

  14. Pu H, Ye S, Wan D (2007) Electrochim Acta 52:5879–5883

    Article  CAS  Google Scholar 

  15. Günday ST, Bozkurt A, Meyer WH, Wegner G (2006) J Polym Sci Part B Polym Phys 44:3315–3322

    Article  Google Scholar 

  16. Celik SU, Bozkurt A (2008) Eur Polym J 44:213–218

    Article  CAS  Google Scholar 

  17. Ozden S, Celik SU, Bozkurt A (2010) Electrochim Acta 55:8498–8503

    Article  Google Scholar 

  18. Kizhnyaev VN, Vereshchagin LI (2003) Russ Chem Rev 72:143–164

    Article  CAS  Google Scholar 

  19. Shin JA, Lim YG, Lee KH (2011) Bull Korean Chem Soc 32:547–552

    Article  CAS  Google Scholar 

  20. Igrunova AV, Sirotinkin NV, Uspenskaya MV (2001) Russ J Appl Chem 74:818–821

    Article  CAS  Google Scholar 

  21. Celik SU, Akbey U, Bozkurt A, Graf R, Spiess HW (2008) Phys Chem Chem Phys 10:6058–6066

    Article  CAS  Google Scholar 

  22. Granados SF, Woudenberg RC, Yavuzcetin O, Tuominen MT, Coughlin EB (2007) Macromolecules 40:8708–8713

    Article  Google Scholar 

  23. Woudenberg RC, Yavuzcetin O, Tuominen MT, Coughlin EB (2007) Solid State Ionics 178:1135–1141

    Article  CAS  Google Scholar 

  24. Martwiset S, Woudenberg RC, Granados SF, Yavuzcetin O, Tuominen MT, Coughlin EB (2007) Solid State Ionics 178:1398–1403

    Article  CAS  Google Scholar 

  25. Bozkurt A, Meyer WH, Gutmann J, Wegner G (2003) Solid State Ionics 164:169–176

    Article  CAS  Google Scholar 

  26. Erdemi H, Bozkurt A (2004) Eur Polym J 40:1925–1929

    Article  CAS  Google Scholar 

  27. Celik SU, Bozkurt A (2010) Solid State Ionics 181:525–530

    Article  CAS  Google Scholar 

  28. Pu HT, Ye S (2006) React Funct Polym 66:856–862

    Article  CAS  Google Scholar 

  29. Gaponik PN, Ivashkevich OA, Karavai VP, Lesnikovich AI, Chernavina NI, Die A (1994) Macromol Chem 219:77–88

    CAS  Google Scholar 

  30. Tsarevsky NV, Bernaerts KV, Dufour B, Du Prez FE, Matyjaszewski K (2004) Macromolecules 37:9308–9313

    Article  CAS  Google Scholar 

  31. Hongting P, Jie W, Decheng W, Zhihong C (2008) J Membr Sci 322:392–399

    Article  Google Scholar 

  32. Celik SU, Aslan A, Bozkurt A (2008) Solid State Ionics 179:683–688

    Article  CAS  Google Scholar 

  33. Andreas T, Alison HT, Arno K (2002) J Polymer Sci Part A: Polym Chem 40:4333–4343

    Article  Google Scholar 

  34. Aslan A, Celik SU, Bozkurt A (2009) Solid State Ionics 180:1240–1245

    Article  CAS  Google Scholar 

  35. Hazarika M, Jana T (2012) Appl Mater Interfaces 4:5256–5265

    Article  CAS  Google Scholar 

  36. Aslan A, Sen U, Bozkurt A (2009) J The Electrochem Soc 156(10):B1112–B1116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific Research Fund of Fatih University under the project number P50021204_B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Bozkurt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinirlioglu, D., Muftuoglu, A.E. & Bozkurt, A. 5-(methacrylamido)tetrazole and vinyl triazole based copolymers as novel anhydrous proton conducting membranes. J Polym Res 20, 242 (2013). https://doi.org/10.1007/s10965-013-0242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0242-1

Keywords

Navigation