Skip to main content
Log in

Dielectric behavior of polyurethane and polyurethane-urea elastomers with pyridine moieties in the main chain

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effects of the hard segments structure (1, 6-hexamethylene diisocyanate with 2,3-dihydroxy-pyridine or 2-amino-3-hydroxy-pyridine as chain extenders) on molecular dynamics and local relaxation of two series of polyurethanes were investigated using broadband dielectric spectroscopy. The dielectric experimental data were measured under identical conditions in the frequency range of 100 Hz to 106 Hz and within the temperature range of −100 to 100 °C and were analyzed in terms of electric modulus formalism. All pyridine based-polyurethanes exhibit three distinct relaxation processes (γ, β and α) in their dielectric loss spectra, while at higher temperatures and low frequencies conductivity has a great contribution to dielectric losses. The activation energies for the relaxations and glass transition temperatures (obtained by differential scanning calorimetry) were analyzed and compared. The presence of urea groups and chemical cross-links slightly increases the glass transition temperature and decreases the dielectric strength of the segmental relaxation as a result of higher cohesive domains which disrupt micro-phase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mishra AK, Chattopadhyay DK, Sreedhar B, Raju KVSN (2006) J Appl Polym Sci 102:3158–3167

    Article  CAS  Google Scholar 

  2. John B, Furukawa M (2012) J Polym Res 19:9764

    Article  Google Scholar 

  3. Sardon H, Irusta L, Santamaría P, Fernández-Berridi MJ (2012) J Polym Res 19:9956

    Article  Google Scholar 

  4. Chen S, Wang Q, Wang T (2012) J Polym Res 19:9994

    Google Scholar 

  5. Qin XM, Xiong JW, Yang XH, Wang XL, Zheng Z (2007) J Appl Polym Sci 104:3554–3561

    Article  CAS  Google Scholar 

  6. Jewrajka SK, Kang J, Erdodi G, Kennedy JP, Yilgor E, Yilgor I (2009) J Polym Sci Part A Polym Chem 47:2787–2797

    Article  CAS  Google Scholar 

  7. Nalawade A, Hassan MK, Jarrett WA, Mauritz KA, Litt MH (2012) Polym Int 61:55–64

    Article  CAS  Google Scholar 

  8. Oprea S (2012) J Polym Res 19:9767

    Article  Google Scholar 

  9. Chen S, Hu J, Yuen CW, Chan L (2010) Polym Int 59:529–538

    Article  CAS  Google Scholar 

  10. Chen S, Hu J, Zhuo H, Yuen C, Chan L (2010) Polymer 51:240–248

    Article  CAS  Google Scholar 

  11. Monkman AP, Palsson LO, Higgins RWT, Wang C, Bryce MR, Batsanov AS, Howard JAK (2002) J Am Chem Soc 124:6049–6055

    Article  CAS  Google Scholar 

  12. Liaw DJ, Wang KL, Chang FC, Lee KR, Lai JY (2007) J Polym Sci Polym Chem 45:2367–2374

    Article  CAS  Google Scholar 

  13. Alam M, Ashraf SM, Ahmad S (2008) J Polym Res 15:343–350

    Article  CAS  Google Scholar 

  14. Wong BM, Cordaro JG (2011) J Phys Chem C 115:18333–18341

    Article  CAS  Google Scholar 

  15. Facchetti A (2011) Chem Mater 23:733–758

    Article  CAS  Google Scholar 

  16. Psarras GC, Siengchin S, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J (2011) Polym Int 60:1715–1721

    Article  CAS  Google Scholar 

  17. Masoud MS, Shaker MA, Ali AE (2006) Spectrochim Acta A 65:127–132

    Article  Google Scholar 

  18. Oprea S (2011) J Polym Res 18:1777–1785

    Article  CAS  Google Scholar 

  19. Oprea S, Potolinca VO (2012) J Mater Sci 47:677–684

    Article  CAS  Google Scholar 

  20. Oprea S, Potolinca VO, Buruiana EC (2012) Adv Polym Technol 31:364–373

    Article  CAS  Google Scholar 

  21. Schonhals A, Kremer F (2003) Analysis of dielectric spectra. In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin, pp 59–98

    Chapter  Google Scholar 

  22. McCrum NG, Read BE, Williams G (1967) Anelastic and dielectric effects in polmeric solids. Wiley, New York, p 617

    Google Scholar 

  23. Petrovic ZS, Javni I, Banhegy G (1998) J Polym Sci B Polym Phys 36:237–251

    Article  CAS  Google Scholar 

  24. Mohsen NM, Craig RG, Filisko FE (2000) J Oral Rehabil 27:250–268

    Article  CAS  Google Scholar 

  25. Czech P, Okrasa L, Ulanski J, Boiteux G, Mechin F, Cassagnau P (2007) J Appl Polym Sci 105:89–98

    Article  CAS  Google Scholar 

  26. Okrasa L, Czech P, Boiteux G, Méchin F, Ulanski J (2008) Polymer 49:2662–2668

    Article  CAS  Google Scholar 

  27. Pissis P, Apekis L, Christodoulides C, Niaounakis M, Kyritsis A, Nedbal J (1996) J Polym Sci B Polym Phys 34:1529–1539

    Article  CAS  Google Scholar 

  28. Havriliak S, Negami S (1967) Polymer 8:161–210

    Article  CAS  Google Scholar 

  29. Williams G (1997) In Dielectric Spectroscopy of Polymeric Materials; Runt JP, Fitzgerald JJ Eds. American Chemical Society: Washington, DC

  30. Böttcher CJF, Bordewijk P (1978) Theory of electric polarization, vol II, 2nd edn. Elsevier, Amsterdam, p 225

    Google Scholar 

  31. Sengwa RJ, Sankhla S (2008) Polym Bull 60:689–700

    Article  CAS  Google Scholar 

  32. Polizos G, Kyritsis A, Pissis P, Shilov VV, Shevchenko VV (2000) Solid State Ionics 136–137:1139–1146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Oprea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potolinca, V.O., Buruiana, E. & Oprea, S. Dielectric behavior of polyurethane and polyurethane-urea elastomers with pyridine moieties in the main chain. J Polym Res 20, 237 (2013). https://doi.org/10.1007/s10965-013-0237-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0237-y

Keywords

Navigation