Skip to main content
Log in

Effect of hydroxylated multiwall carbon nanotubes on dielectric property of poly (vinylidene fluoride)/poly (methyl methacrylate)/hydroxylated multiwall carbon nanotubes blend

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA)/hydroxylated multiwall carbon nanotubes (MWNTs-OH) nanocomposites are prepared via solution blending and hot-press processing. The structure, morphology, crystallization behavior and dielectric properties of nanocomposites are studied. The results show that the crystallization of PVDF is affected by PMMA and MWNTs-OH. With the introduction of PMMA and increment of MWNTs-OH, the content of polar phase in PVDF increases. The dependence of the dielectric properties of the nanocomposites on both volume fraction of the fillers and frequency is investigated. The percolation threshold of the nanocomposite, 2.79 vol.% (volume fraction), is much lower than that of the common two phase particle-polymer composite. A dielectric constant of over 300 is observed at 102 Hz with 3.12 vol.% of MWNTs-OH, which is near the percolation threshold. Large enhancements of the conductivity and loss tangent are also observed near the percolation threshold. The results can be explained by the percolation theory and nanocapacitor model theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH (2012) Prog Mater Sci 57:660

    Article  CAS  Google Scholar 

  2. Wang Y, Zhou X, Chen Q, Chu BJ, Zhang QM (2010) IEEE Trans Dielectr Electr Insul 17(4):1036

    Article  CAS  Google Scholar 

  3. Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Adv Mater 19:852

    Article  CAS  Google Scholar 

  4. Xu HP, Dang ZM, Bing NC, Wu YH, Yang DD (2010) J Appl Phys 107:034105

    Article  Google Scholar 

  5. Zhang QM, Li HF, Poh M, Xu HS, Cheng ZY, Xia F, Huang C (2002) Nature 419:284

    Article  CAS  Google Scholar 

  6. Levi N, Czerw R, Xing SY, Iyer P, Carroll DL (2004) Nano Lett 4:1267

    Article  CAS  Google Scholar 

  7. Firmino Mendes S, Costa CM, Sabater Serra R, Andrio Baldalo A, Sencadas V, Gomez-Ribelles JL, Gregorio R Jr, Lanceros-Méndez S (2012) J Polym Res 19:9967

    Article  Google Scholar 

  8. El Shafee E, El Gamal M, Isa M (2012) J Polym Res 19:9805

    Article  Google Scholar 

  9. Lang SB, Muensit S (2006) Appl Phys A Mater Sci Process 85:125

    Article  CAS  Google Scholar 

  10. Mohammadi B, Yousefi AA, Bellah SM (2007) Polym Test 26:42

    Article  CAS  Google Scholar 

  11. Salimi A, Yousefi AA (2003) Polym Test 22:699

    Article  CAS  Google Scholar 

  12. He LH, Sun J, Zheng XL, Xu Q, Song R (2011) J Appl Polym Sci 119:1905

    Article  CAS  Google Scholar 

  13. Branciforti MC, Sencadas V, Lanceros-Mendez S, Gregorio RJ (2007) J Polym Sci B Polym Phys 45:2793

    Article  CAS  Google Scholar 

  14. Silva MP, Costa CM, Sencadas V, Paleo AJ, Lanceros-Méndez S (2011) J Polym Res 18:1451

    Article  CAS  Google Scholar 

  15. Gregorio RJ (2006) Appl Polym Sci 100:3272

    Article  CAS  Google Scholar 

  16. Wang M, Shi JH, Pramoda KP, Goh SH (2007) Nanotechnology 18:235701

    Article  Google Scholar 

  17. Song HH, Yang SJ, Sun SL, Zhang HX (2013) Polym-Plast Technol Eng 52:221

    Article  CAS  Google Scholar 

  18. Cheng J, Zhang J, Wang XL (2013) J Appl Polym Sci. doi:10.1002/APP.37718

    Google Scholar 

  19. Chen N, Hong L (2002) Polymer 43:1429

    Article  CAS  Google Scholar 

  20. Zhao YH, Qian YL, Zhu BK, Xu YY (2008) J Membr Sci 310:567

    Article  CAS  Google Scholar 

  21. Ma W, Zhang J, Wang X, Wang S (2007) Appl Surf Sci 253:8377

    Article  CAS  Google Scholar 

  22. Huang C, Zhang L (2004) J Appl Polym Sci 92:1

    Article  CAS  Google Scholar 

  23. Wang ZC, Yang XL, Wei JJ, Xu MZ, Tong LF, Zhao R, Liu XB (2012) J Polym Res 19:9969

    Article  Google Scholar 

  24. Zhu ZG, Garcia-Gancedo L, Flewitt AJ, Moussy F, Li YL, Milne WI (2012) J Chem Technol Biotechnol 87:256

    Article  CAS  Google Scholar 

  25. Newman BY, Pae KD, Scheinbeim JI (1979) J Appl Phys 50:6095

    Article  CAS  Google Scholar 

  26. Takahashi Y, Tadokoro H (1980) Macromolecules 13:1316

    Article  CAS  Google Scholar 

  27. Rocha IS, Mattoso LHC, Malmonge LF, Gregorio R Jr (1999) J Polym Sci B 37:1219

    Article  CAS  Google Scholar 

  28. Gregorio R Jr, Nocit NCPS (1995) J Phys D 28:432

    Article  CAS  Google Scholar 

  29. Damjanovic D, Newnham RE (1992) J Intell Mater Syst Struct 3:190

    Article  Google Scholar 

  30. Lee JG, Kim SH (2011) Macromol Res 19:72

    Article  CAS  Google Scholar 

  31. Rahaman M, Chaki TK, Khastgir D (2012) Compos Sci Technol 72:1575

    Article  CAS  Google Scholar 

  32. Pecharroman C, Esteban-Betegon F, Bartolome JF, Lopez-Esteban S, Moya JS (2001) Adv Mater 13:1541

    Article  CAS  Google Scholar 

  33. Thomas Selvin P, Abdullateef Adedigba A, Al-Harthi M, Atieh Muataz A, De SK, Rahaman M, Chaki TK, Khastgir D, Bandyopadhyay S (2012) J Mater Sci 47:3344

    Article  Google Scholar 

  34. Huang XY, Jiang PK, Xie LY (2009) Appl Phys Lett 95:242901

    Article  Google Scholar 

  35. Rahaman M, Thomas Selvin P, Hussein Ibnelwaleed A, De SK (2013) Polym Compos 34:494

    Article  CAS  Google Scholar 

  36. Sohi NJS, Rahaman M, Khastgir D (2011) Polym Compos 32:1148

    Article  CAS  Google Scholar 

  37. Rahaman M, Chaki TK, Khastgir D (2012) Eur Polymer J 48:1241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Innovation Program of Shanghai Municipal Education Commission, Innovation Key Program of Shanghai Municipal Education Commission (No. 13ZZ140), National Natural Science Foundation of China (51207085), Natural Science Foundation of Shanghai (No. 11ZR1413500) and National student innovative experiment plan (No. 012-sj-cxjh-010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiping Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, D., Xu, H., Wu, Y. et al. Effect of hydroxylated multiwall carbon nanotubes on dielectric property of poly (vinylidene fluoride)/poly (methyl methacrylate)/hydroxylated multiwall carbon nanotubes blend. J Polym Res 20, 236 (2013). https://doi.org/10.1007/s10965-013-0236-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0236-z

Keywords

Navigation