Skip to main content
Log in

A new low band gap donor–acceptor alternating copolymer containing dithienothiophene and fluorenone unit

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A low bandgap copolymer poly(3,5-didecanyldithieno[3,2-b:2′,3′-d]thiophene-alt-9-fluorenone) (PDTTFO) consisting of dithieno[3,2-b:2′,3′-d]thiophene (DTT) and 9-fluorenone (FO) was synthesized as the donor material for the polymer solar cells via Stille coupling polymerization. Both donor and acceptor units were confirmed by FT-IR and 1H-NMR. Optoelectronic properties of the PDTTFO copolymer were investigated and observed by UV-vis, photoluminescence (PL) spectrum, and cyclic voltammogram (CV). UV-vis spectrum of the film exhibited two absorption peaks centered at 358, 474 nm with a broad absorption band in the range of 300–700 nm and showed a low bandgap of 1.68 eV. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the polymer were estimated to be −5.09 and −3.41 eV, respectively. Based on the ITO/PEDOT:PSS/PDTTFO:PCBM/Al device structure, the power conversion efficiency (PCE) under the illumination of AM 1.5 (100 mW/cm2) was 0.374 %. The effects of annealing temperature on the device performance were studied. At annealing temperature of 175 °C/30 min, the device demonstrated an optimal efficiency of 0.923 %. The improved device efficiency under the optimal condition was confirmed by the higher light harvest in UV-vis spectra, the enhanced quenching of photoluminescence (PL) emission, the improved nanoscale morphology by atomic force microscopy (AFM) examination, and the increase in external quantum efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Krebs FC, Jorgensen M, Norrman K, Hagemann O, Alstrup J, Nielsen TD, Fyenbo J, Larsen K, Kristensen J (2009) Sol Energy Mater Sol Cells 93:422

    Article  CAS  Google Scholar 

  2. Krebs FC (2009) Sol Energy Mater Sol Cells 93:465

    Article  CAS  Google Scholar 

  3. Krebs FC, Gevorgyan SA, Alstrup J (2009) J Mater Chem 19:5442

    Article  CAS  Google Scholar 

  4. Nielsen TD, Cruickshank C, Foged S, Thorsen J, Krebs FC (2010) Sol Energy Mater Sol Cells 94:1553

    Article  CAS  Google Scholar 

  5. Inganäs O, Svensson M, Zhang F, Gadisa A, Persson NK, Wang X, Andersson MR (2004) J Appl Phys A 79:31

    Article  Google Scholar 

  6. Zhang F, Mammo W, Andersson LM, Admassie S, Andersson MR, Inganäs O (2006) Adv Mater 18:2169

    Article  CAS  Google Scholar 

  7. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2011) Prog Photovolt Res Appl 19:565

    Article  Google Scholar 

  8. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Adv Funct Mater 15:1617

    Article  CAS  Google Scholar 

  9. Yang X, Van Duren JKJ, Rispens MT, Hummelen JC, Janssen RAJ, Michels MAJ, Loos J (2004) Adv Mater 16:802

    Article  CAS  Google Scholar 

  10. Savenije TJ, Kroeze JE, Yang X, Loos J (2005) Adv Funct Mater 15:1260

    Article  CAS  Google Scholar 

  11. Bavel V, Sourty SS, De With E, Loos GJ (2009) Nano Lett 9:507

    Article  Google Scholar 

  12. Coffey DC, Reid OG, Rodovsky DB, Bartholomew GP, Ginger DS (2007) Nano Lett 7:738

    Article  CAS  Google Scholar 

  13. Chu C, Yang H, Hou W, Huang J, Li G, Yang Y (2008) Appl Phys Lett 92:103306

    Article  Google Scholar 

  14. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Nat Mater 6:497

    Article  CAS  Google Scholar 

  15. Wang EG, Wang L, Lan LF, Luo C, Zhuang WL, Peng JB, Cao Y (2008) Appl Phys Lett 92:033307/1

    CAS  Google Scholar 

  16. Zhan X, Tan Z, Domercq B, An Z, Zhang X, Barlow S, Li Y, Zhu D, Kippelen B, Marder SR (2007) J Am Chem Soc 129:7246

    Article  CAS  Google Scholar 

  17. Zhou E, Yamakawa S, Tajima K, Yang C, Hashimoto K (2009) Chem Mater 21:4055

    Article  CAS  Google Scholar 

  18. Brédas JL (1985) J Chem Phys 82:3808

    Article  Google Scholar 

  19. Cheng YJ, Yang SH, Hsu CS (2009) Chem Rev 109:5868

    Article  CAS  Google Scholar 

  20. Brocks G, Tol A (1996) J Phys Chem 100:1838

    Article  CAS  Google Scholar 

  21. Hou J, Chen HY, Zhang S, Li G, Yang Y (2008) J Am Chem Soc 130:16144

    Article  CAS  Google Scholar 

  22. Liang YY, Wu Y, Feng DQ, Tsai ST, Son HJ, Li G, Yu LP (2009) J Am Chem Soc 131:56

    Article  CAS  Google Scholar 

  23. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Nat Photonics 3:297

    Article  CAS  Google Scholar 

  24. Patil AV, Lee WH, Kim K, Park H, Kang IN, Lee SH (2011) Polym Chem 2:2907

    Article  CAS  Google Scholar 

  25. Pomerantz M, Chalonner-Gill B, Harding MO, Tseng JJ, Pomerantz WJ (1992) J Chem Soc Chem Commun 1672

  26. Wudl F, Kobayashi M, Heeger AJ (1984) J Org Chem 49:3382

    Article  CAS  Google Scholar 

  27. Chen GY, Chiang CM, Kekuda D, Lan SC, Chu CW, Wei KH (2010) J Polym Sci A Polym Chem 48:1669

    Article  CAS  Google Scholar 

  28. Yuan MC, Chiu MY, Liu SP, Chen CM, Wei KH (2010) Macromolecules 43:6936

    Article  CAS  Google Scholar 

  29. Patil AV, Lee WH, Lee E, Kim K, Kang IN, Lee SH (2011) Macromolecules 44:1238

    Article  CAS  Google Scholar 

  30. Jung JW, Liu F, Russell TP, Jo WH (2012) Energy Environ Sci 5:6857

    Article  CAS  Google Scholar 

  31. Lee K, Sotzing GA (2001) Macromolecules 34:5746

    Article  CAS  Google Scholar 

  32. Sotzing GA, Lee K (2002) Macromolecules 35:7281

    Article  CAS  Google Scholar 

  33. Lee B, Yavuz MS, Sotzing GA (2006) Macromolecules 39:3118

    Article  CAS  Google Scholar 

  34. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G (2009) Nat Photonics 3:649

    Article  CAS  Google Scholar 

  35. Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L (2010) Adv Mater 22:E135

    Article  CAS  Google Scholar 

  36. Hou J, Chen HY, Zhang S, Chen RI, Yang Y, Wu Y, Li G (2009) J Am Chem Soc 131:15586

    Article  CAS  Google Scholar 

  37. Liang Y, Wu Y, Feng D, Tsai ST, Li G, Ray C, Yu L (2009) J Am Chem Soc 131:7792

    Article  CAS  Google Scholar 

  38. Osaka I, Sauve G, Zhang R, Kowalewski T, McCullough RD (2007) Adv Mater 19:4160

    Article  CAS  Google Scholar 

  39. Sun Y, Ma Y, Liu Y, Lin Y, Wang Z, Wang Y, Di C, Xiao K, Chen X, Qiu W, Zhang B, Yu G, Hu W, Zhu D (2006) Adv Funct Mater 16:426

    Article  CAS  Google Scholar 

  40. Sun Y, Liu Y, Ma Y, Di C, Wang Y, Wu W, Yu G, Hu W, Zhu D (2006) Appl Phys Lett 88:242113

    Article  Google Scholar 

  41. Li J, Ong KH, Lim SL, Ng GM, Tan HS, Chen ZK (2011) Chem Commun 47:9480–9482

    Article  CAS  Google Scholar 

  42. Barbarella G, Favaretto L, Sotgiu G, Antolini L, Gigli G, Cingolani R, Bongini A (2001) Chem Mater 13:4112

    Article  CAS  Google Scholar 

  43. Sotgiu G, Favaretto L, Barbarella G, Antolini L, Gigli G, Mazzeo M, Bongini A (2003) Tetrahedron 59:5083

    Article  CAS  Google Scholar 

  44. Sotgiu G, Zambianchi M, Barbarella G, Aruffo F, Cipriani F, Ventola A (2003) J Org Chem 68:1512

    Article  CAS  Google Scholar 

  45. Frey J, Bond AD, Holmes AB (2002) Chem Commun 20:2424

    Article  Google Scholar 

  46. He M, Zhang F (2007) J Org Chem 72:442

    Article  CAS  Google Scholar 

  47. Arbizzani C, Catellani M, Mastragostino M, Cerroni MG (1997) J Electroanal Chem 423:23

    Article  CAS  Google Scholar 

  48. Catellani M, Lazzarom R, Luzzati S, Brédas JL (1999) Synth Met 101:175

    Article  CAS  Google Scholar 

  49. Tauc J (1974) Amorphous and liquid semiconductors. Plenum, New York

    Book  Google Scholar 

  50. Cervini R, Holmes AB, Moratti SC, Köhler A, Friend RH (1996) Synth Met 76:169

    Article  CAS  Google Scholar 

  51. Li Y, Xue L, Li H, Li Z, Xu B, Wen S, Tian W (2009) Macromolecules 42:4491

    Article  CAS  Google Scholar 

  52. Li G, Shrotriya V, Yao Y, Yang Y (2005) J Appl Phys 98:043704/1

    CAS  Google Scholar 

  53. Li G, Yao Y, Yang H, Shrotriya Y, Yang G, Yang Y (2007) Adv Funct Mater 17:1636

    Article  Google Scholar 

  54. Chen LM, Hong Z, Li G, Yang Y (2009) Adv Mater 21:1434

    Article  CAS  Google Scholar 

  55. Yao Y, Hou J, Xu Z, Li G, Yang Y (2008) Adv Funct Mater 18:1783

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the National Science Council of Republic of China with Grant NSC 99-2221-E-390-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzong-Liu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, TL., Shieh, YT., Yang, CH. et al. A new low band gap donor–acceptor alternating copolymer containing dithienothiophene and fluorenone unit. J Polym Res 20, 213 (2013). https://doi.org/10.1007/s10965-013-0213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0213-6

Keywords

Navigation