Skip to main content

Advertisement

Log in

Mechanical properties and bioactivity of high-performance poly(etheretherketone)/carbon nanotubes/bioactive glass biomaterials

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that exhibits excellent mechanical properties and bone-like stiffness and is widely used in biomaterials. However, the development of PEEK-based bioinert materials has been impeded because PEEK lacks bioactivity. In this study, a series of PEEK/carbon nanotubes (CNTs)/bioactive glass (BG) ternary nanocomposites were produced using injection molding. BG was added to the composites in order to improve the bioactivity of the PEEK, and a novel method of adsorption and co-precipitation was used to add the CNTs to the composites in order to compensate for the deterioration in the mechanical properties of the PEEK caused by the addition of the BG. The microstructures of the composites were investigated using scanning electron microscopy (SEM), and the SEM images revealed that this method permits the uniform dispersion of the CNTs throughout the PEEK matrix. Further, the mechanical properties of the composites were significantly enhanced by the addition of the CNTs. The highest content of CNTs in the composites was 6 wt%. The composites containing 6 wt% CNTs and 4 wt% BG exhibited the same mechanical strength as the pure PEEK. The bioactivity of the PEEK when immersed in simulated body fluid (SBF) was improved by incorporating BG into the composites. These new ternary composite materials which exhibit satisfactory mechanical properties and a high degree of bioactivity have great potential to meet the demand for bone-substitute materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kurtz SM, Devine JN (2007) Biomaterials 28:4845–4869

    Article  CAS  Google Scholar 

  2. Han C-M, Lee E-J, Kim H-E, Koh Y-H, Kim KN, Ha Y et al (2010) Biomaterials 31:3465–3470

    Article  CAS  Google Scholar 

  3. Lin W, Luqian W, Shenhua S, Zhongyi Z, Shengli T, Rui M (2011) Mater Sci Eng Struct Mater Prop Microstruct Process 528:3689–3696

    Article  Google Scholar 

  4. Lovald S, Kurtz SM (2012) Chapter 15 - Applications of Polyetheretherketone in Trauma, Arthroscopy, and Cranial Defect Repair. PEEK Biomaterials Handbook. Oxford, William Andrew Publishing, p 243–260

  5. Abu Bakar MS, Cheng MHW, Tang SM, Yu SC, Liao K, Tan CT et al (2003) Biomaterials 24:2245–2250

    Article  CAS  Google Scholar 

  6. Fan JP, Tsui CP, Tang CY, Chow CL (2004) Biomaterials 25:5363–5373

    Article  CAS  Google Scholar 

  7. Wang L, Weng L, Song S, Sun Q (2010) Mater Lett 64:2201–2204

    Article  CAS  Google Scholar 

  8. Roeder RK, Converse GL, Weimin Y (2007) Biomaterials 28:927–935

    Article  Google Scholar 

  9. Ma R, Weng L, Fang L, Luo Z, Song S (2012) J Sol-Gel Sci Technol 62:52–56

    Article  CAS  Google Scholar 

  10. von Wilmowsky C, Vairaktaris E, Pohle D, Rechtenwald T, Lutz R, Muenstedt H et al (2008) J Biomed Mater Res A 87A:896–902

    Article  Google Scholar 

  11. Boccaccini AR, Peters C, Roether JA, Eifler D, Misra SK, Minay EJ (2006) J Mater Sci 41:8152–59

    Article  CAS  Google Scholar 

  12. Wang M (2003) Biomaterials 24:2133–2151

    Article  CAS  Google Scholar 

  13. Hench LL (2006) J Mater Sci Mater Med 17:967–978

    Article  CAS  Google Scholar 

  14. Juhasz JA, Best SM (2012) J Mater Sci 47:610–624

    Article  CAS  Google Scholar 

  15. Bhakta S, Faira PE, Salata LA, de Oliveira Neto PJ, Miller CA, van Noort R et al (2012) J Mater Sci Mater Med 23:2521–2529

    Article  CAS  Google Scholar 

  16. Kokubo T, Kim HM, Kawashita M (2003) Biomaterials 24:2161–2175

    Article  CAS  Google Scholar 

  17. Popov VN (2004) Mater Sci Eng R Rep 43:61–102

    Article  Google Scholar 

  18. Terrones M (2004) Int Mater Rev 49:325–377

    Google Scholar 

  19. Dıez-Pascual AM, Martiınez G, Gonzalez-Domınguez JM, Anson A, Martiınez MT, Gomez MA (2010) Carbon 48:3485–3499

    Google Scholar 

  20. Dıez-Pascual AM, Martiınez G, Martiınez MT, Gomez MA (2010) Carbon 48:3500–3511

    Google Scholar 

  21. Chlopek J, Czajkowska B, Szaraniec B, Frackowiak E, Szostak K, Beguin F (2006) Carbon 44:1106–1111

    Article  CAS  Google Scholar 

  22. Bottini M, Rosato N, Bottini N (2011) Biomacromolecules 12:3381–3393

    Article  CAS  Google Scholar 

  23. Liu Y, Zhao Y, Sun B, Chen C (2013) Acc Chem Res 46:702–713

    Article  CAS  Google Scholar 

  24. Rodriguez-Yanez Y, Munoz B, Albores A (2013) Toxicol Mech Methods 23:178–195

    Article  CAS  Google Scholar 

  25. Garibaldi S, Brunelli C, Bavastrello V, Ghigliotti G, Nicolini C (2006) Nanotechnology 17:391–397

    Article  CAS  Google Scholar 

  26. Di Crescenzo A, Velluto D, Hubbell JA, Fontana A (2011) Nanoscale 3:925–928

    Article  Google Scholar 

  27. Chee Leng L, Hui Qi L, Hui Ru T, Ye L (2010) Nanotechnology 21:065101

    Google Scholar 

  28. Jae Ryoun Y, Jin Ah K, Dong Gi S, Tae Jin K (2006) Carbon 44:1898–1905

    Google Scholar 

  29. Peitl O, Zanotto ED, Serbena FC, Hench LL (2012) Acta Biomater 8:321–332

    Article  CAS  Google Scholar 

  30. Liu W, Wu X, Zhan H, Yan F (2012) Mater Sci Eng C Mater Biol Appl 32:707–711

    Article  CAS  Google Scholar 

  31. Liuyun J, Chengdong X, Dongliang C, Lixin J, Xiubing P (2012) Appl Surf Sci 259:72–78

    Google Scholar 

  32. Diez-Pascual AM, Martinez G, Martinez MT, Gómez MA (2010) J Mater Chem 20:8247–8258

    Google Scholar 

  33. Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  34. Diez-Pascual AM, Naffakh M, Gomez MA, Marco C, Ellis G, Teresa Martinez M et al (2009) Carbon 47:3079–3090

    Article  CAS  Google Scholar 

  35. Curran SA, Ajayan PM, Blau WJ, Carroll DL, Coleman JN, Dalton AB et al (1998) Adv Mater 10:1091

    Article  CAS  Google Scholar 

  36. Huang JE, Li XH, Xu JC, Li HL (2003) Carbon 41:2731–2736

    Article  CAS  Google Scholar 

  37. Ogasawara T, Tsuda T, Takeda N (2011) Compos Sci Technol 71:73–78

    Article  CAS  Google Scholar 

  38. Zhou B, Ji XB, Sheng Y, Wang LF, Jiang ZH (2004) Eur Polym J 40:2357–2363

    Article  CAS  Google Scholar 

  39. Rui M, Luqian W, Xujin B, Zhuo N, Shenhua S, Weiquan C (2012) Mater Lett 71:117–119

    Article  Google Scholar 

  40. Rong C, Ma G, Zhang S, Song L, Chen Z, Wang G et al (2010) Compos Sci Technol 70:380–386

    Article  CAS  Google Scholar 

  41. Peitl O, LaTorre GP, Hench LL (1996) J Biomed Mater Res 30:509–514

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the key project of the “Western Light” Foundation of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Fang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, CT., Chi, M., Zheng, YY. et al. Mechanical properties and bioactivity of high-performance poly(etheretherketone)/carbon nanotubes/bioactive glass biomaterials. J Polym Res 20, 203 (2013). https://doi.org/10.1007/s10965-013-0203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0203-8

Keywords

Navigation