Skip to main content
Log in

Controllable preparation of branched polyethylene with different microstructures via chain transfer ethylene polymerization catalyzed by α-diimine Ni complex/methylaluminoxane/diethylzinc

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This contribution explored the adjustment of polyethylene (PE) microstructures via chain transfer ethylene polymerization catalyzed by α-diimine Ni complex/methylaluminoxane (MAO) with diethyl zinc (ZnEt2) as the chain transfer agent (CTA). Ethylene polymerizations were conducted in the presence of varying equivalents of ZnEt2 (Zn/Ni) at 5 °C, 22 °C and 32 °C, respectively. From high temperature GPC results, it was found that the molecular weight (MW) of prepared PE decreased with the increase of Zn/Ni ratio as a whole, indicating the occurrence of chain transfer to ZnEt2. From 13C NMR spectra, the branching distributions of PE were calculated. The data indicated that the addition of ZnEt2 brought weak influences on the branching distribution of resultant PE. It is worthwhile to note that both the catalytic activity and branching degree reach their maximums at Zn/Ni = 100. As a significant factor, temperature showed a remarkable influence on ethylene polymerizations and on the PE microstructures. A probable mechanism for the influence of chain transfer to CTA on PE microstructures was proposed.

Controllable preparation of branched polyethylene with different microstructures via chain transfer ethylene polymerization catalyzed by α-diimine Ni complex/methylaluminoxane/diethylzinc

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. Mäder D, Heinemann J, Walter P, Mülhaupt R (2000) Influence of n-alkyl branches on glass-transition temperatures of branched polyethylenes prepared by means of metallocene- and palladium-based catalysts. Macromolecules 33(4):1254–1261. doi:10.1021/ma991096o

    Article  Google Scholar 

  2. Wood-Adams PM, Dealy JM, deGroot AW, Redwine OD (2000) Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 33(20):7489–7499. doi:10.1021/ma991533z

    Article  CAS  Google Scholar 

  3. Wood-Adams P, Costeux S (2001) Thermorheological behavior of polyethylene: effects of microstructure and long chain branching. Macromolecules 34(18):6281–6290. doi:10.1021/ma0017034

    Article  CAS  Google Scholar 

  4. Koo CM, Wu L, Lim LS, Mahanthappa MK, Hillmyer MA, Bates FS (2005) Microstructure and mechanical properties of semicrystalline—rubbery—semicrystalline triblock copolymers. Macromolecules 38(14):6090–6098. doi:10.1021/ma0501794

    Article  CAS  Google Scholar 

  5. Krishnaswamy RK, Yang Q, Fernandez-Ballester L, Kornfield JA (2008) Effect of the distribution of short-chain branches on crystallization kinetics and mechanical properties of high-density polyethylene. Macromolecules 41(5):1693–1704. doi:10.1021/ma070454h

    Article  CAS  Google Scholar 

  6. Camacho DH, Guan Z (2005) Living polymerization of α-olefins at elevated temperatures catalyzed by a highly active and robust cyclophane-based nickel catalyst. Macromolecules 38(7):2544–2546. doi:10.1021/ma050039u

    Article  CAS  Google Scholar 

  7. Domski GJ, Rose JM, Coates GW, Bolig AD, Brookhart M (2007) Living alkene polymerization: new methods for the precision synthesis of polyolefins. Prog Polym Sci 32(1):30–92

    Article  CAS  Google Scholar 

  8. Lee J-Y, Tsai J-C (2011) End-functionalization of isotactic polypropylene via consecutive chain transfer reaction to norbornadiene and hydrogen. J Polymer Sci, Part A: Polymer Chem 49(17):3739–3750. doi:10.1002/pola.24810

    Article  CAS  Google Scholar 

  9. Mitani M, J-i M, Yoshida Y, Saito J, Ishii S, Tsuru K, Matsui S, Furuyama R, Nakano T, Tanaka H, S-i K, Matsugi T, Kashiwa N, Fujita T (2002) Living polymerization of ethylene catalyzed by titanium complexes having fluorine-containing phenoxy-imine chelate ligands. J Am Chem Soc 124(13):3327–3336. doi:10.1021/ja0117581

    Article  CAS  Google Scholar 

  10. Zhang W, Wei J, Sita LR (2008) Living coordinative chain-transfer polymerization and copolymerization of ethene, α-olefins, and α, ω-nonconjugated dienes using dialkylzinc as “surrogate” chain-growth sites. Macromolecules 41(21):7829–7833. doi:10.1021/ma801962v

    Article  CAS  Google Scholar 

  11. Sworen JC, Wagener KB (2007) Linear low-density polyethylene containing precisely placed hexyl branches. Macromolecules 40(13):4414–4423. doi:10.1021/ma070317k

    Article  CAS  Google Scholar 

  12. Gates DP, Svejda SA, Oñate E, Killian CM, Johnson LK, White PS, Brookhart M (2000) Synthesis of branched polyethylene using (α-diimine)nickel(ii) catalysts: influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules 33(7):2320–2334. doi:10.1021/ma991234+

    Article  CAS  Google Scholar 

  13. Shiono T, Kurosawa H, Soga K (1992) Synthesis of carboxy- and chloro-terminated poly(propy1ene)s using Zn(C2H5)2 as chain transfer reagent. Makromol Chem Macromol Chem Phys 193(11):2751–2761

    Article  CAS  Google Scholar 

  14. Fu PF, Marks TJ (1995) Silanes as chain transfer agents in metallocene-mediated olefin polymerization. Facile in situ catalytic synthesis of silyl-terminated polyolefins. J Am Chem Soc 117(43):10747–10748. doi:10.1021/ja00148a019

    Article  CAS  Google Scholar 

  15. Koo K, Marks TJ (1998) Silanolytic chain transfer in ziegler-natta catalysis. Organotitanium-mediated formation of new silapolyolefins and polyolefin architectures. J Am Chem Soc 120(16):4019–4020. doi:10.1021/ja972194x

    Article  CAS  Google Scholar 

  16. Dong JY, Wang ZM, Hong H, Chung TC (2002) Synthesis of isotactic polypropylene containing a terminal Cl, OH, or NH2 group via metallocene-mediated polymerization/chain transfer reaction. Macromolecules 35(25):9352–9359. doi:10.1021/ma0211582

    Article  CAS  Google Scholar 

  17. Kandil U, Chung TC (2005) Synthesis of ethylene/propylene elastomers containing a terminal reactive group: the combination of metallocene catalysis and control chain transfer reaction. J Polym Sci Part a Polym Chem 43(9):1858–1872. doi:10.1002/pola.20672

    Article  CAS  Google Scholar 

  18. Xu G, Chung TC (1999) Borane chain transfer agent in metallocene-mediated olefin polymerization. Synthesis of borane-terminated polyethylene and diblock copolymers containing polyethylene and polar polymer. J Am Chem Soc 121(28):6763–6764. doi:10.1021/ja9913232

    Article  CAS  Google Scholar 

  19. Chung TC, Xu G, Lu Y, Hu Y (2001) Metallocene-mediated olefin polymerization with B-H chain transfer agents: synthesis of chain-end functionalized polyolefins and diblock copolymers. Macromolecules 34(23):8040–8050. doi:10.1021/ma011074d

    Article  CAS  Google Scholar 

  20. Han CJ, Lee MS, Byun D-J, Kim SY (2002) Synthesis of hydroxy-terminated polyethylene via controlled chain transfer reaction and poly(ethylene-b-caprolactone) block copolymer. Macromolecules 35(24):8923–8925. doi:10.1021/ma025565p

    Article  CAS  Google Scholar 

  21. Lin WT, Dong JY, Chung TCM (2008) Synthesis of chain end functional isotactic polypropylene by the combination of metallocene/MAO catalyst and organoborane chain transfer agent. Macromolecules 41(22):8452–8457. doi:10.1021/ma801469s

    Article  CAS  Google Scholar 

  22. Zhang W, Sita LR (2008) Highly efficient, living coordinative chain-transfer polymerization of propene with ZnEt2: practical production of ultrahigh to very low molecular weight amorphous atactic polypropenes of extremely narrow polydispersity. J Am Chem Soc 130(2):442–443. doi:10.1021/ja078120v

    Article  CAS  Google Scholar 

  23. Hustad PD, Kuhlman RL, Arriola DJ, Carnahan EM, Wenzel TT (2007) Continuous production of ethylene-based diblock copolymers using coordinative chain transfer polymerization. Macromolecules 40(20):7061–7064. doi:10.1021/ma0717791

    Article  CAS  Google Scholar 

  24. Zhang CH, Dong JY (2010) Dialkylzinc compounds as chain transfer agents in ethylene and propylene polymerizations catalyzed by metallocene catalysts. J Macromol Sci Part A-Pure Appl Chem 47(4):324–328

    Article  CAS  Google Scholar 

  25. Britovsek GJP, Cohen SA, Gibson VC, van Meurs M (2004) Iron catalyzed polyethylene chain growth on zinc: a study of the factors delineating chain transfer versus catalyzed chain growth in zinc and related metal alkyl systems. J Am Chem Soc 126(34):10701–10712. doi:10.1021/ja0485560

    Article  CAS  Google Scholar 

  26. van Meurs M, Britovsek GJP, Gibson VC, Cohen SA (2005) Polyethylene chain growth on zinc catalyzed by olefin polymerization catalysts: a comparative investigation of highly active catalyst systems across the transition series. J Am Chem Soc 127(27):9913–9923. doi:10.1021/ja050100a

    Article  Google Scholar 

  27. Guan ZB, Cotts PM, McCord EF, McLain SJ (1999) Chain walking: a new strategy to control polymer topology. Science 283(5410):2059–2062

    Article  CAS  Google Scholar 

  28. Mecking S, Johnson LK, Wang L, Brookhart M (1998) Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and α-olefins with methyl acrylate. J Am Chem Soc 120(5):888–899. doi:10.1021/ja964144i

    Article  CAS  Google Scholar 

  29. Ittel SD, Johnson LK, Brookhart M (2000) Late-metal catalysts for ethylene homo- and copolymerization. Chem Rev 100(4):1169–1204. doi:10.1021/cr9804644

    Article  CAS  Google Scholar 

  30. Britovsek GJP, Cohen SA, Gibson VC, Maddox PJ, van Meurs M (2002) Iron-catalyzed polyethylene chain growth on zinc: linear alpha-olefins with a Poisson distribution. Angew Chem Int Ed 41(3):489–491

    Article  CAS  Google Scholar 

  31. Rouholahnejad F, Mathis D, Chen P (2010) Narrowly distributed polyethylene via reversible chain transfer to aluminum by a sterically hindered zirconocene/MAO. Organometallics 29(2):294–302. doi:10.1021/om900238k

    Article  CAS  Google Scholar 

  32. Johnson LK, Killian CM, Brookhart M (1995) New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and .alpha.-olefins. J Am Chem Soc 117(23):6414–6415. doi:10.1021/ja00128a054

    Article  CAS  Google Scholar 

  33. Liimatta JO, Lofgren B, Miettinen M, Ahlgren M, Haukka M, Pakkanen TT (2001) Molecular structure determination of Ni(II) diimine complex and DMA analysis of Ni(II) diimine-based polyethenes. J Polym Sci Part Polym Chem 39(9):1426–1434

    Article  CAS  Google Scholar 

  34. McCord EF, McLain SJ, Nelson LTJ, Ittel SD, Tempel D, Killian CM, Johnson LK, Brookhart M (2007) 13C NMR analysis of α-olefin enchainment in poly(α-olefins) produced with nickel and palladium α-diimine catalysts. Macromolecules 40(3):410–420. doi:10.1021/ma061547m

    Article  CAS  Google Scholar 

  35. Ittel SD, Johnson LK, Brookhart M (2000) Late-metal catalysts for ethylene homo- and copolymerization. Chem Rev 100(4):1169–1203

    Article  CAS  Google Scholar 

  36. Killian CM, Tempel DJ, Johnson LK, Brookhart M (1996) Living polymerization of α-olefins using NiII-α-diimine catalysts. Synthesis of new block polymers based on α-olefins. J Am Chem Soc 118(46):11664–11665. doi:10.1021/ja962516h

    Article  CAS  Google Scholar 

  37. Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL, Wenzel TT (2006) Catalytic production of olefin block copolymers via chain shuttling polymerization. Science 312(5774):714–719. doi:10.1126/science.1125268

    Article  CAS  Google Scholar 

  38. Maldanis RJ, Wood JS, Chandrasekaran WA, Rausch MD, Chien JCW (2002) The formation and polymerization behavior of Ni(II) alpha-diimine complexes using various aluminum activators. J Organomet Chem 645(1–2):158–167

    Article  CAS  Google Scholar 

  39. Liu FS, Hu HB, Xu Y, Guo LH, Zai SB, Song KM, Gao HY, Zhang L, Zhu FM, Wu Q (2009) Thermostable α-diimine nickel(II) catalyst for ethylene polymerization: effects of the substituted backbone structure on catalytic properties and branching structure of polyethylene. Macromolecules 42(20):7789–7796. doi:10.1021/ma9013466

    Article  CAS  Google Scholar 

  40. Kaneyoshi H, Inoue Y, Matyjaszewski K (2005) Synthesis of block and graft copolymers with linear polyethylene segments by combination of degenerative transfer coordination polymerization and atom transfer radical polymerization. Macromolecules 38(13):5425–5435. doi:10.1021/ma050263j

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Project of Science and Technology of Zhejiang Province (No.2008C14089) and Scholarship Award for Excellent Doctoral Student granted by Ministry of Education for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Wang, L., Yu, H. et al. Controllable preparation of branched polyethylene with different microstructures via chain transfer ethylene polymerization catalyzed by α-diimine Ni complex/methylaluminoxane/diethylzinc. J Polym Res 20, 184 (2013). https://doi.org/10.1007/s10965-013-0184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0184-7

Keywords

Navigation