Skip to main content
Log in

Structural characterization and thermal behaviour of wool keratin hydrolizates-polypropylene composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Innovative polypropylene composites were prepared using as a biofiller, wool keratin hydrolizates obtained by a green process with superheated water in a microwave reactor. To promote the affinity between the hydrophobic polymer and the biofiller, maleic anhydride grafted polypropylene was used as a compatibilizer. The composites showed a homogeneous dispersion of the keratin particles in the polymer matrix. The thermal properties and the structure of the composites were investigated in dependence of keratin loading and crystallization conditions. The keratin particles had a heterogeneous nucleating action on polypropylene crystallization that increased the overall crystallization rate. The nucleation density increased as a function of the keratin amount in the composites. The crystallinity, the crystal dimension and the long period of the polypropylene were found to be dependent on the crystallization condition and the composite composition. In the crystallized composites, the keratin component, having dimension in the nano- and micro-scale length, was relegated to the intraspherulitic and/or interspherulitic polypropylene regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24

    Article  Google Scholar 

  2. Canetti M, Bertini F, De Chirico A, Audisio G (2006) Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym Degrad Stab 91:494–498

    Article  CAS  Google Scholar 

  3. Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M (2005) Green composites from recycled cellulose and poly(lactic acid): physico-mechanical and morphological properties evaluation. J Mater Sci 40:4221–4229

    Article  CAS  Google Scholar 

  4. Kim HS, Lee BH, Choi SW, Kim S, Kim HJ (2007) The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos Part A 38:1473–1482

    Article  Google Scholar 

  5. Rimdusit S, Wongsongyot S, Jittarom S, Suwanmala P, Tiptipakorn S (2011) Effects of gamma irradiation with and without compatibilizer on the mechanical properties of polypropylene/wood flour composites. J Polym Res 18:801–809

    Article  CAS  Google Scholar 

  6. Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandi M, Zoia L (2012) Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym Degrad Stab 97:1979–1987

    Article  CAS  Google Scholar 

  7. Zhao W, Yang R, Zhang Y, Wu L (2012) Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: high density steam flash-explosion. Green Chem 14:3352–3360

    Article  CAS  Google Scholar 

  8. Cheng S, Lau KT, Liu T, Zhao Y, Lam PM, Yin Y (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos Part B: Eng 40:650–654

    Article  Google Scholar 

  9. Fazilat H, Akhlaghi S, Shiri ME, Sharif A (2012) Predicting thermal degradation kinetics of nylon6/feather keratin blends using artificial intelligence techniques. Polymer 53:2255–2264

    Article  CAS  Google Scholar 

  10. Akhlaghi S, Sharif A, Kalaee M, Manafi M (2011) Miscibility and thermal behavior of poly(vinyl chloride)/feather keratin blends. J Appl Polym Sci 121:3252–3261

    Article  CAS  Google Scholar 

  11. Conzatti L, Giunco F, Stagnaro P, Capobianco M, Castellano M, Marsano E (2012) Polyester-based biocomposites containing wool fibres. Compos Part A 43:1113–1119

    Article  CAS  Google Scholar 

  12. Barone JR, Schmidt WF (2005) Polyethylene reinforced with keratin fibers obtained from chicken feathers. Compos Sci Technol 65:173–181

    Article  CAS  Google Scholar 

  13. Barone JR, Schmidt WF, Liebner CFE (2005) Compounding and molding of polyethylene composites reinforced with keratin feather fiber. Compos Sci Technol 65:683–692

    Article  CAS  Google Scholar 

  14. Barone JR (2005) Polyethylene/keratin fiber composites with varying polyethylene crystallinity. Compos Part A 36:1518–1524

    Article  Google Scholar 

  15. Huda S, Yang Y (2009) Feather fiber reinforced light-weight composites with good acoustic properties. J Polym Environ 17:131–142

    Article  CAS  Google Scholar 

  16. Spiridon I, Paduraru OM, Rudowski M, Kozlowski M, Darie RN (2012) Assessment of changes due to accelerated weathering of low-density polyethylene/feather composites. Ind Eng Chem Res 51:7279–7286

    Article  CAS  Google Scholar 

  17. Bullions TA, Hoffman D, Gillespie RA, Price-O’Brien J, Loos AC (2006) Contributions of feather fibers and various cellulose fibers to the mechanical properties of polypropylene matrix composites. Compos Sci Technol 66:102–114

    Article  CAS  Google Scholar 

  18. Xu W, Wang X, Li W, Peng X, Liu X, Wang XG (2007) Characterization of superfine wool powder/poly(propylene) blend film. Macromol Mater Eng 292:674–680

    Article  CAS  Google Scholar 

  19. Huda S, Yang Y (2008) Composites from ground chicken quill and polypropylene. Compos Sci Technol 68:790–798

    Article  CAS  Google Scholar 

  20. Reddy N, Yang Y (2010) Light-weight polypropylene composites reinforced with whole chicken feathers. J Appl Polym Sci 116:3668–3675

    CAS  Google Scholar 

  21. Bullions TA, Gillespie RA, Price-O’Brien J, Loos AC (2004) The effect of maleic anhydride modified polypropylene on the mechanical properties of feather fiber, kraft pulp, polypropylene composites. J Appl Polym Sci 92:3771–3783

    Article  CAS  Google Scholar 

  22. Barone JR, Gregoire NT (2006) Characterization of fiber-polymer interactions and trans-crystallinity in short keratin fiber/polypropylene composites. Plast Rubber Compos 35:287–293

    CAS  Google Scholar 

  23. Liu X, Xu W, Peng X (2009) Effects of Stearic Acid on the interface and performance of polypropylene/superfine down powder. Polym Compos 30:1854–1863

    Article  CAS  Google Scholar 

  24. Zoccola M, Aluigi A, Patrucco A, Vineis C, Forlini F, Locatelli P, Sacchi MC, Tonin C (2012) Microwave-assisted chemical-free hydrolysis of wool keratin. Text Res J 82:2006–2018

    Article  Google Scholar 

  25. Bertini F, Canetti M, Patrucco A, Zoccola M (2013) Wool keratin-polypropylene composites: properties and thermal degradation. Polym Degrad Stab 98:980–987

    Google Scholar 

  26. Avrami M (1939) Kinetics of phase change I. General theory. J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  27. Canetti M, De Chirico A, Audisio G (2004) Morphology, crystallization and melting properties of isotactic polypropylene blended with lignin. J Appl Polym Sci 91:1435–1442

    Article  CAS  Google Scholar 

  28. Canetti M, Bertini F (2007) Supermolecular structure and thermal properties of poly(ethylene terephthalate)/lignin composites. Compos Sci Technol 67:3151–3157

    Article  CAS  Google Scholar 

  29. Mandelkern L (1964) Crystallization in Polymers. McGraw-Hill, New York

    Google Scholar 

  30. Hoffmann JD, Weeks JJ (1962) Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand 66(A):13–18

    Google Scholar 

  31. Varga J (1992) Supermolecular structure of isotactic polypropylene. J Mater Sci 27:2557–2579

    Article  CAS  Google Scholar 

  32. Glatter O, Kratky O (1982) Small Angle X-ray Scattering. Academic, London

  33. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. John Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The authors thank Fondazione Cariplo (Italy) for the financial support of the project “Keratin-based composite bioplastics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Canetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canetti, M., Cacciamani, A. & Bertini, F. Structural characterization and thermal behaviour of wool keratin hydrolizates-polypropylene composites. J Polym Res 20, 181 (2013). https://doi.org/10.1007/s10965-013-0181-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0181-x

Keywords

Navigation