Relaxation behavior of chlorobutyl elastomer nanocomposites: effect of temperature, multiwalled carbon nanotube and frequency

  • S. K. Tiwari
  • R. N. P. Choudhary
  • S. P. MahapatraEmail author
Original Paper


Dynamic mechanical (visco-elastic) relaxation and dielectric relaxation spectra of multiwalled carbon nanotube (MWCNT) reinforced chlorobutyl (CIIR) elastomer nanocomposites were studied. The primary relaxation (α transition, the glass transition) have been studied by dynamic mechanical analysis as a function of temperature (−100 °C to 100 °C) at a frequency of 1 Hz and at 1 % strain. Irrespective of the MWCNT loading, all nanocomposites showed glass-transition temperatures in the range of −15 °C to −10 °C, which was explained on the basis of the relaxation dynamics of polyisobutylene chains in the vicinity of the fillers. The nonlinearity in the tan δ and storage modulus was explained by the concept of MWCNT-chlorobutyl interactions and the aggregation of the nanotubes. The secondary relaxation (α* or β relaxation) have been studied using dielectric relaxation spectra in the frequency range of 100–106 Hz. The capacitance of the nanocomposite was expressed in terms of dielectric permittivity and explained on the basis of polarization of the MWCNT in the chlorobutyl matrix. The electric modulus formalism has been utilized to further investigate the conductivity and relaxation phenomenon. Argand diagram confirms the existence of non-debye/non-linear relationship. The percolation threshold of was found to be at 6 phr MWCNT loading, as studied by conductivity and dielectric permittivity measurements.


Elastomer Nanocomposite Visco-elastic Dielectric Relaxation and percolation 


  1. 1.
    Wolff S, Wang MJ, Tan EH (1993) Filler-elastomer interactions. Part VII. Study on bound rubber. Rubber chemistry and technology. Rubber Chem Technol 66:163–177CrossRefGoogle Scholar
  2. 2.
    Dutta NK, Tripathi DK (1992) Effects of types of fillers on the molecular relaxation characteristics, dynamic mechanical, and physical properties of rubber vulcanizates. J Appl Polym Sci 44:1635–1648CrossRefGoogle Scholar
  3. 3.
    Sridhar V, Chaudhary RNP, Tripathy DK (2006) Effect of fillers on the relaxation behavior of chlorobutyl vulcanizates. J Appl Polym Sci 100:3161. doi: 10.1002/app.23148 CrossRefGoogle Scholar
  4. 4.
    Katsuno T, Chen X, Yang S, Motojima S, Homma M, Maeno T, Konyo M (2006) Observation and analysis of percolation behavior in carbon microcoils/silicone-rubber composite sheets. Appl Phys Lett 88:232115. doi: 10.1063/1.2206701 CrossRefGoogle Scholar
  5. 5.
    Chen G, Wu C, Weng W, Wu D, Yan Y (2003) Preparation of polystyrene/graphite nanosheet composites. Polymer 44:1781–1784. doi: 10.1016/S0032-3861(03)00050-8 CrossRefGoogle Scholar
  6. 6.
    Pham TT, Sridhar V, Kimand V, Kim JK (2009) Fluroelastomer MWCNT nanocomposites 1. disperssion, morphology. physico-mechanical and thermal properties. Polym Sci 111:1358Google Scholar
  7. 7.
    Long D, Lequeux F (2001) Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur Phys J 4:371–387Google Scholar
  8. 8.
    Ediger MD (2000) Spatially heterogeneous dynamic in supercolled liquids. Annu Rev Phys Chem 51:99. doi: 10.1146/annurev.physchem CrossRefGoogle Scholar
  9. 9.
    Trakulsujaritchok T, Hourston DJ (2006) Damping characteristics and mechanical properties of silica filled PUR/PEMA simultaneous interpenetrating polymer network. Eur Polym J 42:2968–2976. doi: 10.1016/j.eurpolymej.2006.07.028 CrossRefGoogle Scholar
  10. 10.
    Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SWJ (2000) Relaxation in glassforming liquids and amorphous solids. Appl Phys 88:3113. doi: 10.1063/1.1286035 CrossRefGoogle Scholar
  11. 11.
    Hodge IM (1994) Enthalpy relaxation and recover in amorphous materials. J Non-Cryst Solids 169:211.SSDI 0022-3093(93) E0614-EGoogle Scholar
  12. 12.
    Litvinov VM, Steeman PAM (1999) EPDM-carbon black interaction and the reinforcement mechanisms as studied by low resolution 1H NMR. Macromolecules 32:8476–8490CrossRefGoogle Scholar
  13. 13.
    Valentini L, Amentano I, Biagotti J, Kenny JM, Santucci S (2003) Frequency dependent electrical transport between conjugated polymer and single-walled carbon nanotubes. Diam Relat Mater 12:1601. doi: 10.1016/S0925-9635(03)00249-8 CrossRefGoogle Scholar
  14. 14.
    McLachlan DS, Chiteme C, Park C, Wise KE, Lowther SE, Lillehei PT, Siochi EJ, Harrison JS (2005) AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J Polym Sci B Polym Phys 43:3273–3287CrossRefGoogle Scholar
  15. 15.
    Roland CM, Bero CM (1996) Macromolecules 29:7521CrossRefGoogle Scholar
  16. 16.
    Runt JP, Fitzgerald JJ (1997) Dielectric spectroscopy of polymeric materials, fundamentals and applications. American Chemical Society, Washington, DCGoogle Scholar
  17. 17.
    Matsuoka S (1992) Relaxation phenomena in polymers. Hanser, MunichGoogle Scholar
  18. 18.
    Huber G, Vilgis TA (2002) On the mechanisms of hydrodynamics reinforcement in elastic composites. Macromolecules 35:9204. doi: 10.1021/ma0208887 CrossRefGoogle Scholar
  19. 19.
    Kluppel M, Heinrich G (1995) Fractal structures in carbon black reinforced rubbers. Rubber Chem Technol 68:623CrossRefGoogle Scholar
  20. 20.
    Roychoudhury A, De PP (1995) Elastomer-carbon block interaction: influence of elastomer chemical structure and carbon black surface chemistry on bound rubber formation. J Appl Polym Sci 55:9–15CrossRefGoogle Scholar
  21. 21.
    Knite M, Teteris V, Kiploka A, Klemenoks I (2004) Reversible tenso-resistance and Piezo-resistance effects in conductive polymer-carbon nanocomposites. Adv Eng Mater 6:742–746CrossRefGoogle Scholar
  22. 22.
    Huber G, Vilgis TA (2002) On the mechanisms of hydrodynamics reinforcement in elastic composites. Macromolecules 35:9204CrossRefGoogle Scholar
  23. 23.
    Dang ZM, Yao SH, Xu HP (2007) Effect of tensile strain on morphology and dielectric property in nanotube/polymer nanocomposites. Appl Phys Lett 90:012907CrossRefGoogle Scholar
  24. 24.
    Pichon L, Jacques E, Rogel R, Salaun AC, Demami F (2013) Variable range hopping conduction in Nand P-type in situ doped polycrystalline silicon nanowires. Semicond Sci Technol 28:025002 (6pp)CrossRefGoogle Scholar
  25. 25.
    Balberg I, Anderson CH, Alexander S, Wagner N (1984) Excluded volume and its relation to the onset of percolation. Phys Rev B 30:3933–3943CrossRefGoogle Scholar
  26. 26.
    Kim BW, Pfeifer S, Park SH, Bandaru PR (2011) The experimental determination of the onset of electrical and thermal conductivity percolation thresholds in carbon nanotube-polymer composites. Mater Res Soc Symp Proc 1312:281–286CrossRefGoogle Scholar
  27. 27.
    Nanda M, Tripathy DK (2008) Physico-mechanical and electrical properties of conductive carbon black reinforced chlorosulfonated polyethylene vulcanizates. eXPRESS Polym Lett 2:855–865CrossRefGoogle Scholar
  28. 28.
    Lux F (1993) Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materirals. J Mater Sci 28:285–301CrossRefGoogle Scholar
  29. 29.
    Das NC, Chaki TK, Khastgir D, Chakraborty A (2002) Electrical and mechanical properties of conductive carbon black filled EVA, EPDM and their blends. Kautschuk Gummi Kunststoffe 55:300–306Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. K. Tiwari
    • 1
  • R. N. P. Choudhary
    • 2
  • S. P. Mahapatra
    • 1
    Email author
  1. 1.Department of ChemistryNational Institute of Technology RaipurRaipurIndia
  2. 2.Department of PhysicsInstitute of Technical Education and Research BhubaneswarBhubaneswarIndia

Personalised recommendations