Skip to main content

Advertisement

Log in

Poly(benzoxazole-amide-imide) copolymers for interlevel dielectrics: interchain hydrogen bonding, molecular arrangement and properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of novel random poly(benzoxazole-amide-imide) copolymers were synthesized via the poly(amic acid)s from the reaction of 5-amino-2-(4-aminophenyl)benzoxazole (BOA) and 4-amino-N-(4-aminophenyl)benzamide (DABA) with 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA). The corresponding homopolyimides were also prepared for comparison. The chemical composition, interchain hydrogen bonding and molecular arrangement of the copolyimides in solid films were investigated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, computation techniques and wide angle X-ray diffraction (WAXD). The results indicated that the interchain hydrogen bonds were most likely formed between the amide oxygen atoms and -N-H bands. And the ordered chain packing structures of copolyimide films were completely different from those of the homopolyimide films probably due to the directional interchain hydrogen bonding interactions. The properties of the copolyimides were also well-characterized by tensile tests, dynamic mechanical analysis (DMA), thermal gravimetric analysis (TGA) along with water absorption, solubility and peel tests. All of the obtained copolyimide films exhibited high tensile strength (321 ~ 332 MPa) and modulus (6.76 ~ 8.03 GPa) without any stretching. Moreover, the glass transition temperatures (T gs) and 5 % weight-loss temperatures of the copolyimides in nitrogen were above 322 and 560 °C, respectively. Additionally, the copolyimide films also exhibited low water absorption, excellent chemical resistance and good adhesion properties suitable for interlevel dielectrics in microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tao LM, Yang HX, Liu JG, Fan L, Yang SY (2009) Polymer 50:6009–6018

    Article  CAS  Google Scholar 

  2. Yang CP, Chen YC, Hsiao SH, Guo W, Wang HM (2010) J Polym Res 17:779–788

    Article  CAS  Google Scholar 

  3. Liu CL, Kurosawa T, Yu AD, Higashihara T, Ueda M, Chen WC (2011) J Phys Chem C 115:5930–5939

    Article  CAS  Google Scholar 

  4. Dixit BC, Dixit RB, Desai DJ (2010) J Polym Res 17:481–488

    Article  CAS  Google Scholar 

  5. Hsiao SH, Wang HM, Chen WJ, Lee TM, Leu CM (2011) J Polym Sci Pol Chem 49:3109–3120

    Article  CAS  Google Scholar 

  6. Kung YC, Hsiao SH (2011) J Mater Chem 21:1746–1754

    Article  CAS  Google Scholar 

  7. Koohmareh G, Mohammadifard N (2011) J Polym Res 18:983–991

    Article  CAS  Google Scholar 

  8. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Prog Polym Sci 37:907–974

    Article  CAS  Google Scholar 

  9. Chung IS, Park CE, Ree M, Kim SY (2001) Chem Mater 13:2801–2806

    Article  CAS  Google Scholar 

  10. Chen HL, Ho SH, Wang TH, Chen KM, Pan JP, Liang SM, Hung A (1994) J Appl Polym Sci 51:1647–1652

    Article  CAS  Google Scholar 

  11. Kuorosawa T, Chueh CC, Liu CL, Higashihara T, Ueda M, Chen WC (2010) Macromolecules 43:1236–1244

    Article  CAS  Google Scholar 

  12. You NH, Chueh CC, Liu CL, Ueda M, Chen WC (2009) Macromolecules 42:4456–4463

    Article  CAS  Google Scholar 

  13. Qiu W, Chen CC, Xu L, Cui L, Paul DR, Koros WJ (2011) Macromolecules 44:6046–6056

    Article  CAS  Google Scholar 

  14. Kratochvil AM, Koros WJ (2010) Macromolecules 43:4679–4687

    Article  CAS  Google Scholar 

  15. Park CH, Lee CH, Sohn JY, Park HB, Guiver MD, Lee YM (2010) J Phys Chem B 114:12036–12045

    Article  CAS  Google Scholar 

  16. Xiao Y, Dai Y, Chung TS, Guiver MD (2005) Macromolecules 38:10042–10049

    Article  CAS  Google Scholar 

  17. Qiu WL, Chen CC, Kincer MR, Koros WJ (2011) Polymer 52:4073–4082

    Article  CAS  Google Scholar 

  18. Seo J, Kang J, Cho K, Park CE (2002) J Adhes Sci Technol 16:1839–1851

    Article  CAS  Google Scholar 

  19. Myung BY, Ahn CJ, Yoon TH (2005) J Appl Polym Sci 96:1801–1809

    Article  CAS  Google Scholar 

  20. Ku CK, Ho CH, Lee YD (2005) J Adhes Sci Technol 19:909–925

    Article  CAS  Google Scholar 

  21. Chan Park MB, Tan SS (2002) Int J Adhes Adhes 22:471–475

    Article  CAS  Google Scholar 

  22. Thiruvasagam P, Vijayan M (2012) J Polym Res 19:9845

    Article  Google Scholar 

  23. Hsu SL-C, Luo GW, Chen HT, Chuang SW (2005) J Polym Sci Part A Polym Chem 43:6020–6027

    Article  CAS  Google Scholar 

  24. Wang HH, Wu SP (2003) J Appl Polym Sci 90:1435–1444

    Article  CAS  Google Scholar 

  25. Wang S, Zhou HW, Dang GD, Chen CH (2009) J Polym Sci Part A: Polym Chem 47:2024–2031

    Article  CAS  Google Scholar 

  26. Jia X, Chao D, Liu H, He L, Zheng T, Bian X, Wang C (2011) Polym Chem 2:1300–1306

    Article  CAS  Google Scholar 

  27. Musto P, Karasz FE, MacKnight WJ (1989) Polymer 30:1012–1021

    Article  CAS  Google Scholar 

  28. Liu XY, Gao GQ, Dong L, Ye GD, Gu Y (2009) Polym Adv Technol 20:362–366

    Article  CAS  Google Scholar 

  29. Wang S, Bao G, Lu Z, Wu P, Han Z (2000) J Mater Sci 35:5873–5877

    Article  CAS  Google Scholar 

  30. Garcia JM, Garcia FC, Serna F, de la Pena JL (2010) Prog Polym Sci 35:623–686

    Article  CAS  Google Scholar 

  31. Luo L, Pang Y, Jiang X, Wang X, Zhang P, Chen Y, Peng C, Liu X (2011) J Polym Res 19:9783

    Article  Google Scholar 

  32. Wu SY, Yuen SM, Ma CCM, Huang YL (2009) J Appl Polym Sci 113:2301–2312

    Article  CAS  Google Scholar 

  33. Zhuang YB, Liu XY, Gu Y (2012) Polym Chem 3:1517–1525

    Article  CAS  Google Scholar 

  34. Jou JH, Huang PT (1991) Macromolecules 24:3796–3803

    Article  CAS  Google Scholar 

  35. Raharintsalama R, Munakata H, Koyama M, Kubo M, Miyamoto A (2005) Appl Surf Sci 244:631–635

    Article  CAS  Google Scholar 

  36. Zhuang YB, Gu Y (2012) J Polym Res 19:14

    Article  Google Scholar 

  37. Zhuang YB, Gu Y (2012) J Macromol Sci Part B: Phys 51:2157–2170

    Article  CAS  Google Scholar 

  38. Anto PL, Panicker CY, Varghese HT, Philip D, Temiz-Arpaci O, Tekiner-Gulbas B, Yildiz I (2007) Spectrochim Acta Part A 67:744–749

    Article  CAS  Google Scholar 

  39. Mary YS, Varghese HT, Panicker CY, Ertan T, Yildiz I, Temiz-Arpaci O (2008) Spectrochim Acta Part A 71:566–571

    Article  Google Scholar 

  40. Ree M, Kim K, Woo SH, Chang H (1997) J Appl Phys 81:698–708

    Article  CAS  Google Scholar 

  41. Ishii J, Takata A, Oami Y, Yokota R, Vladimirov L, Hasegawa M (2010) Eur Polym J 46:681–693

    Article  CAS  Google Scholar 

  42. Ishii J, Shimizu N, Ishihara N, Ikeda Y, Sensui N, Matano T, Hasegawa M (2010) Eur Polym J 46:69–80

    Article  CAS  Google Scholar 

  43. Lee KW, Viehbeck A, Walker GF, Cohen S, Zucco P, Chen R, Ree M (1996) J Adhes Sci Technol 10:807–821

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work was supported by the National Natural Science Foundation of China (Grant NO. 50433010) and Construct Program of the Key Discipline in Hunan province (Applied Chemistry).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, Y., Gu, Y. Poly(benzoxazole-amide-imide) copolymers for interlevel dielectrics: interchain hydrogen bonding, molecular arrangement and properties. J Polym Res 20, 168 (2013). https://doi.org/10.1007/s10965-013-0168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0168-7

Keywords

Navigation