Skip to main content
Log in

Light scattering and surface tensiometric studies of tip-modified PEO-PBO diblock copolymers in water

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The micellar and associative properties of four diblock copolymers, Me2N(CH2)2OE79B34 (denoted DE80B34), IMe3N+(CH2)2OE79B34 (denoted TE80B34), IMe3N+(CH2)2OE48B22 (denoted TE49B22), and HO(CH2)2OE62B22 (denoted E62B22), in aqueous solution and at various concentrations and temperatures, were investigated by surface tensiometry and dynamic and static laser light scattering. Surface tension measurements enabled the critical micelle concentration (CMC) to be determined at different temperatures, and thus the enthalpy of micellization (ΔH o mic), the free energy of micellization (ΔG o mic), and the entropy of micellization (ΔS o mic) to be ascertained. Dynamic and static light-scattering measurements allowed the micellar parameters to be calculated and the extent of hydration of the copolymer micelle to be obtained qualitatively. The experimental results provided by these techniques are discussed in the terms of the variation in the hydrophilic to hydrophobic (E/B) ratio and end-group modification. Micellar parameters such as the weight-average molar mass (M w), the association number (N w), the thermodynamic radius (r t), and the hydrodynamic radius (r h) obtained from light-scattering data show that the micelles formed by the conventional E m B n and dimethylamino-tipped (DE m B n ) copolymers are harder than those of trimethylammonium-tipped (TE m B n ) copolymers. This difference in micellar properties is considered to be due to differences in polarity and charge effect at the hydrophilic ends of the tip-modified copolymers. The high value of r h for DE m B n and TE m B n copolymers as compared to E62B22 is an indication of micellar aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hadjichristidis N, Pispas S, Floudas GA (2003) Block copolymers. Synthetic strategies, physical properties and applications. Wiley, New York

  2. Rao J, Zhang J, Xu J, Liu S (2008) J Colloid Interface Sci 328:196–202

    Article  CAS  Google Scholar 

  3. Hamley W (1998) The physics of block copolymers. Oxford University Press, Oxford

    Google Scholar 

  4. Jones MC, Gao H, Leroux C (2008) J Control Release 132:208–215

    Article  CAS  Google Scholar 

  5. Booth C, Attwood D (2000) Macromol Rapid Commun 21:501–527

    Article  CAS  Google Scholar 

  6. Loh W (2002) In: Hubbard AT (ed) Encyclopedia of surface and colloid science. Marcel Dekker, New York, pp 802–813

    Google Scholar 

  7. Cambón A, Rey-Rico A, Barbosa S, Soltero JFA, Yeates SG, Brea J, Loza MI, Alvarez-Lorenzo C, Concheiro A, Taboada P, Mosquera V (2013) J Control Release 167:68–75

    Article  Google Scholar 

  8. Yu K, Esenberg A (1998) Macromolecules 31:3509–3518

    Article  CAS  Google Scholar 

  9. Liu G (2000) Chin J Polym Sci 18:255–262

    Google Scholar 

  10. Spatz JP, Herzog T, Mobmer S, Ziemann P, Moller M (1999) Adv Mater 11:149–153

    Article  CAS  Google Scholar 

  11. Jenekhe SA, Chen XL (1999) Science 283:372–375

    Article  CAS  Google Scholar 

  12. Iijma M, Nagasaki Y, Okada T, Kato M, Kataoka K (1999) Macromolecules 2:1140–1146

    Article  Google Scholar 

  13. Otsuka U, Nagasaki Y, Kataoka K, Okano T, Sakurai Y (1998) Polym Prepr 9:128–129

    Google Scholar 

  14. Yuan J, Xu Z, Cheng S, Feng L (2002) Eur Polym J 38:1537–1546

    Article  CAS  Google Scholar 

  15. Booth C, Yu GE, Nace VM (2000) In: Alexandridis P, Lindman B (eds) Amphiphilic block copolymers: self-assembly and applications. Elsevier, Amsterdam, pp 57–86

    Chapter  Google Scholar 

  16. Booth C, Attwood D, Price C (2006) Phys Chem Chem Phys 8:3612–3622

    Article  CAS  Google Scholar 

  17. Alexandridis P (1997) Curr Opin Colloid Interface Sci 2:478–489

    Article  CAS  Google Scholar 

  18. Castro E, Tabooda P, Mosquera V (2005) J Phys Chem B 109:5592–5599

    Article  CAS  Google Scholar 

  19. Li X, Wettig SD, Verrall RE (2005) J Colloid Interface Sci 282:466–477

    Article  CAS  Google Scholar 

  20. Mata J, Joshi T, Varade D, Ghosh G, Bahadur P (2004) Colloids Surf A 247:1–7

    Article  CAS  Google Scholar 

  21. Desai H, Varade D, Aswal VK, Goyal PS, Bauhaus P (2006) Eur Polym J 42:593–601

    Google Scholar 

  22. Jain NJ, Aswal VK, Goyal PS, Bahadur P (2000) Colloids Surf A 173:85–94

    Article  CAS  Google Scholar 

  23. Castro E, Tabooda P, Mosquera V (2006) J Phys Chem B 110:13113–13123

    Article  CAS  Google Scholar 

  24. Ganguly R, Aswal VK, Hassan PA, Gopalakrishnan IK, Yakhmi JV (2005) J Phys Chem B 109:5653–5658

    Article  CAS  Google Scholar 

  25. Kelarakis A, Mai SM, Havredaki V, Nace VM, Booth C (2001) Phys Chem Chem Phys 3:4037–4043

    Article  CAS  Google Scholar 

  26. Maskos M (2006) Polymer 47:1172–1178

    Article  CAS  Google Scholar 

  27. Tattershall CE, Jerome NP, Budd PM (2001) J Mater Chem 11:2979–2984

    Article  CAS  Google Scholar 

  28. Tattershall CE, Aslam SJ, Budd PM (2002) J Mater Chem 12:2286–2291

    Article  CAS  Google Scholar 

  29. Siddiq M, Harrison W, Tattershall CE, Budd PM (2003) Phys Chem Chem Phys 5:3968–3972

    Article  CAS  Google Scholar 

  30. Rosen MJ (1978) Surfactants and interfacial phenomena. Wiley, New York, pp 83–89

  31. Khan A, Siddiq M (2010) J Appl Polym Sci 118:3324–3332

    Article  CAS  Google Scholar 

  32. Hall DG (1987) In: Schick MJ (ed) Nonionic surfactants: physical chemistry. Marcel Dekker, New York, pp 247–248

  33. Sultana SB, Bhat SGT, Rakshit AK (1997) Langmuir 13:4562–4568

    Article  Google Scholar 

  34. Nostro PL, Gabrielli G (1993) Langmuir 9:3132–3137

    Article  Google Scholar 

  35. Soni SS, Sastry NV, Patra AK, Joshi JV, Goyal PS (2002) J Phys Chem B 106:13069–13077

    Article  CAS  Google Scholar 

  36. Soni SS, Sastry NV, Aswal VK, Goyal PS (2002) J Phys Chem B 106:2606–2617

    Article  CAS  Google Scholar 

  37. Rosen MJ, Cohen AW, Dahanayeke M, Hua X-Y (1982) J Phys Chem 86:541–545

    Article  CAS  Google Scholar 

  38. Hiemenz PC, Rajagopalan R (1997) Principles of colloids and surface chemistry, 3rd edn. Marcel Dekker, New York

  39. William RJ, Phillips JN, Mysels KJ (1955) Trans Faraday Soc 51:561–569

    Article  Google Scholar 

  40. Provencher SW (1979) Makromol Chem 180:201–209

    Article  CAS  Google Scholar 

  41. Chaibundit C, Ricardo NMPS, Crothers M, Booth C (2002) Langmuir 18:4277–4283

    Article  CAS  Google Scholar 

  42. Barbosa S, Cheema MA, Taboada P, Mosquera V (2007) J Phys Chem B 111:10920–10928

    Article  CAS  Google Scholar 

  43. Wu C, Xia KQ (1994) Rev Sci Instrum 65:587–590

    Article  CAS  Google Scholar 

  44. Vrij A (1978) J Chem Phys 69:1742–1747

    Article  CAS  Google Scholar 

  45. Mai SM, Booth C, Nace VM (1997) Eur Polym J 33:991–996

    Google Scholar 

  46. Khan A, Farooqi ZH, Siddiq M (2012) J Appl Polym Sci 124:951–957

    Article  CAS  Google Scholar 

  47. Siddiq M, Liu G, Zhang G, Khan A, Budd PM (2010) Polym Bull 65:521–531

    Article  CAS  Google Scholar 

  48. Derici L, Ledger S, Mai SM, Booth C, Hamley IW, Pedersen JS (1999) Phys Chem Chem Phys 1:2773–2785

    Article  CAS  Google Scholar 

  49. Mingavinish W, Mai SM, Heatle F, Booth C (1999) J Phys Chem B 103:11269–11274

    Article  Google Scholar 

  50. Hamley IW, Daniel C, Mingvanish W, Mai SM, Booth C, Messe L, Ryan AJ (2000) Langmuir 16:2508–2514

    Article  CAS  Google Scholar 

  51. Budd PM (1989) In: Allen G, Bevington JC, Booth C, Price C (eds) Comprehensive polymer science. Pergamon, Oxford

  52. Budd PM (2002) In: Tripathy SK, Kumar J, Nalwa HS (eds) Handbook of polyelectrolytes and their applications. American Scientific, Stevenson Ranch

  53. James AM, Lord MP (1992) Macmillan’s chemical and physical data. Macmillan, London

    Google Scholar 

  54. Diaz-Fernandez Y, Foti F, Mangano C, Pallavicini P, Patroni S, Perez-Gramatges A, Rodriguez-Calvo S (2006) Chem Eur J 12:921–930

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Carin Tattershall (University of Manchester) for the synthesis of the dimethylamino- and trimethylammonium-tipped diblock copolymers. We are also thankful to Professor Peter M. Budd of the University of Manchester for helpful discussions. Dr. Abbas Khan is grateful to the Higher Education Commission (H.E.C.) Pakistan for financial support under the indigenous Ph.D. fellowship scheme. He also wishes to acknowledge the Third World Academy of Sciences for a split Ph.D. research fellowship to work in the Department of Chemical Physics, University of Science and Technology, Hefei, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Siddiq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A., Siddiq, M. Light scattering and surface tensiometric studies of tip-modified PEO-PBO diblock copolymers in water. J Polym Res 20, 160 (2013). https://doi.org/10.1007/s10965-013-0160-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0160-2

Keywords

Navigation